ruT5-base_headline_generation
Model Details
T5 Base for news headline generation (Russian). The model is finetuned for best performance on short news texts (128 words or less), but it has decent metrics on longer articles as well. The model generates abstractive headlines that on average include 6-11 words.
Base Model: ai-forever/ruT5-base
Training Details
Training Data: 247 000 news articles in Russian
Training Procedure: 6 epochs, all details and hyperparameters in this Google Colab notebook
Testing Metrics
- Rouge1: 40.24
- Rouge2: 23.05
- RougeL: 37.57
How to Use
from transformers import AutoTokenizer, T5ForConditionalGeneration
model_name = "wanderer-msk/ruT5-base_headline_generation"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
news_text = """Земляне продолжают осваивать Марс.
Колонисты уже посадили на красной планете 42 яблони."""
model_input = tokenizer(
news_text,
truncation=True,
max_length=1024,
return_tensors="pt"
)
model_output = model.generate(model_input["input_ids"])
news_headline = tokenizer.decode(
model_output.squeeze(),
skip_special_tokens=True
)
print(news_headline)
- Downloads last month
- 4,784
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for wanderer-msk/ruT5-base_headline_generation
Base model
ai-forever/ruT5-base