File size: 9,408 Bytes
ca9f11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torchmetrics.classification
from torchmetrics.text import ROUGEScore
from model import build_transformer
from shakespeare_config import (get_config, 
                                get_data_folder_path, 
                                get_weights_file_path, 
                                latest_weights_file_path,
                                current_directory,
                                causal_mask,
                                get_gpt2_tokenizer)

import torch 
import torch.nn as nn 
from torch.utils.tensorboard import SummaryWriter
import torchmetrics
import numpy as np
import warnings
import os
from pathlib import Path

def get_model(config):
    model = build_transformer(vocab_size=config['vocab_size'],
                              seq_len=config['seq_len'],
                              d_model=config['d_model'])
    return model

def get_batch(split, data_dir, block_size, batch_size, device='gpu', device_type='cuda'):
    # We recreate np.memmap every batch to avoid a memory leak, as per
    # https://stackoverflow.com/questions/45132940/numpy-memmap-memory-usage-want-to-iterate-once/61472122#61472122
    if split == 'train':
        data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
    else:
        data = np.memmap(os.path.join(data_dir, 'test.bin'), dtype=np.uint16, mode='r')
    ix = torch.randint(len(data) - block_size, (batch_size,))
    x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
    y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
    # if device_type == 'cuda':
    #     # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
    #     x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
    # else:
    #     x, y = x.to(device), y.to(device)
    return x, y

def greedy_decode(model, 
                  input, 
                  mask,
                  tokenizer,
                  max_len,
                  device):
    while True:
        if input.size(1) == max_len:
            break

        out = model.decode(input, mask)
        prob = model.project(out[:, -1])
        _, next_word = torch.max(prob, dim=1)
        input = torch.cat(
            [input, torch.empty(1,1).type_as(input).fill_(next_word.item()).to(device)],
            dim=1
        )
        if next_word == tokenizer.eos_token_id:
            break 
    return input.squeeze(0)

def run_validation(model,
                   x,
                   y,
                   tokenizer,
                   max_len,
                   device,
                   print_msg,
                   global_step,
                   writer,
                   rouge:ROUGEScore):
    
    model.eval()
    source_texts = []
    expected = []
    predicted = []
    
    with torch.no_grad():
        decoder_input = x.to(device) # (b, seq)
        mask = causal_mask(x.size(1)).to(device) #(b,1,1,seq)

        # check that batch size is 1
        assert decoder_input.size(0)==1, "batch size  must be 1 for validation"

        model_out = greedy_decode(model,
                                  decoder_input, 
                                  mask, 
                                  tokenizer,
                                  max_len, 
                                  device)
        
        source_text = tokenizer.decode(x[0])
        target_text = tokenizer.decode(y[0])
        model_out_text = tokenizer.decode(model_out.detach().cpu().numpy())

        source_texts.append(source_text)
        expected.append(target_text)
        predicted.append(model_out_text)
        
        # Print the source, target and model output
        print_msg('-'*100)
        print_msg(f"{f'SOURCE: ':>12}{source_text}")
        print_msg(f"{f'TARGET: ':>12}{target_text}")
        print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")

        rouge_score = rouge(predicted, expected)  
        print_msg(f"{f'ROUGE-1 Score: ':>12}{rouge_score['rouge1_fmeasure'].item()}")
        print_msg(f"{f'ROUGE-2 Score: ':>12}{rouge_score['rouge2_fmeasure'].item()}")
        print_msg(f"{f'ROUGE-L Score: ':>12}{rouge_score['rougeL_fmeasure'].item()}")      
        print_msg('-'*100)

        if writer:
            writer.add_scalar('validation ROUGE/ROUGE-1', rouge_score["rouge1_fmeasure"].item(), global_step)
            writer.add_scalar('validation ROUGE/ROUGE-2', rouge_score["rouge2_fmeasure"].item(), global_step)
            writer.add_scalar('validation ROUGE/ROUGE-L', rouge_score["rougeL_fmeasure"].item(), global_step)
            writer.add_scalar('validation ROUGE/ROUGE-L', rouge_score["rougeLsum_fmeasure"].item(), global_step)
            writer.flush() 

def train_model(config):
    # define the device 
    device = "cuda" if torch.cuda.is_available() else "mps" if torch.has_ms or torch.backends.mps.is_available else "cpu"
    print("Using device:", device)

    if (device == 'cuda'):
        print(f"Device name: {torch.cuda.get_device_name(device=device.index)}")
        print(f"Device memory: {torch.cuda.get_device_properties(device.index).total_memory / 1024 ** 3} GB")
    elif (device == 'cpu'):
        print(f"device name: <mps>")
    else:
        print("It's cpu")

    device = torch.device(device)

    # make sure the weights folder exists 
    Path(f"{current_directory}/{config['datasource']}_{config['model_folder']}").mkdir(parents=True, exist_ok=True)

    tokenizer = get_gpt2_tokenizer(config=config)
    model = get_model(config).to(device) 
    # tensorboard
    writer = SummaryWriter(f"{current_directory}/{config['experiment_name']}")

    optimizer = torch.optim.Adam(model.parameters(), 
                                 lr=config['lr'],
                                 eps=1e-9)
    rouge:ROUGEScore = ROUGEScore()

    # if the user specified a model to preload before training, load it 
    initial_epoch = 0
    global_step = 0
    preload = config['preload']
    model_filename = (latest_weights_file_path(config) if preload == 'latest' else get_weights_file_path(config, preload) if preload else None)
    if model_filename:
        print(f'Preloading model {model_filename}')
        state = torch.load(model_filename)
        model.load_state_dict(state['model_state_dict'])
        initial_epoch = state['epoch'] + 1 
        optimizer.load_state_dict(state['optimizer_state_dict'])
        global_step = state['global_step']
    else:
        print('No model to preload, starting from scratch')

    loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer.convert_tokens_to_ids('[PAD]'), label_smoothing=0.1).to(device)
    for epoch in range(initial_epoch, config['num_epochs']):
        torch.cuda.empty_cache()
        model.train()
        #batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d}")
        X, y = get_batch(split='train',
                        data_dir=get_data_folder_path(config=config),
                        block_size=config['seq_len'],
                        batch_size=config['batch_size'])
        print(f'length of the batch: {len(X)}, type:{X.shape}')

        decoder_input = X.to(device) # (b, seq_len)
        decoder_mask = causal_mask(config['seq_len']).to(device) # (1, seq_len, seq_len)

        # run the tensors through the encoder, decoder and the projection layer
        decoder_output = model.decode(decoder_input, decoder_mask) # (b, seq, d_model)
        proj_output = model.project(decoder_output) # (B, seq_len, vocab_size)

        # compare the output with the label
        label = y.to(device) #(b, seq_len)

        # compute the loss using a simple cross entropy
        loss = loss_fn(proj_output.view(-1, config['vocab_size']), 
                        label.view(-1))
        #batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"})
        print(f"loss: {loss.item():6.3f}")

        # log the loss 
        writer.add_scalar('train loss', loss.item(), global_step)
        writer.flush()

        # backpropagate the loss 
        loss.backward()

        # update the weights
        optimizer.step()
        optimizer.zero_grad(set_to_none=True)

        global_step += 1

        # run validation at the end of every epoch
        X_val, y_val = get_batch(split='val',
                        data_dir=get_data_folder_path(config=config),
                        block_size=config['seq_len'],
                        batch_size=1)
        run_validation(model, 
                       X_val,
                       y_val, 
                       tokenizer, 
                       config['seq_len'], 
                       device, 
                       lambda msg: print(msg), 
                       global_step, 
                       writer,
                       rouge)

        if epoch%1000==0 or epoch >= (config['num_epochs']-1):
            # save the model at the end of every epoch
            model_filename = get_weights_file_path(config, f"{epoch:02d}")
            torch.save({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'global_step': global_step
            }, model_filename)

if __name__ == '__main__':
    warnings.filterwarnings("ignore")
    config = get_config()
    train_model(config)