decoder only transformer learning
Browse files- .gitignore +169 -0
- README.md +1 -3
- learning.py +78 -0
- model.py +448 -0
- requirements.txt +12 -0
- shakespeare/data/input.txt +0 -0
- shakespeare/data/test.bin +3 -0
- shakespeare/data/train.bin +3 -0
- shakespeare/weights/tmodel_26000.pt +3 -0
- shakespeare_config.py +57 -0
- shakespeare_data.py +49 -0
- shakespeare_inference.py +115 -0
- train.py +234 -0
.gitignore
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Initially taken from Github's Python gitignore file
|
2 |
+
|
3 |
+
# Byte-compiled / optimized / DLL files
|
4 |
+
__pycache__/
|
5 |
+
*.py[cod]
|
6 |
+
*$py.class
|
7 |
+
|
8 |
+
# C extensions
|
9 |
+
*.so
|
10 |
+
|
11 |
+
# tests and logs
|
12 |
+
tests/fixtures/cached_*_text.txt
|
13 |
+
logs/
|
14 |
+
lightning_logs/
|
15 |
+
lang_code_data/
|
16 |
+
|
17 |
+
# Distribution / packaging
|
18 |
+
.Python
|
19 |
+
build/
|
20 |
+
develop-eggs/
|
21 |
+
dist/
|
22 |
+
downloads/
|
23 |
+
eggs/
|
24 |
+
.eggs/
|
25 |
+
lib/
|
26 |
+
lib64/
|
27 |
+
parts/
|
28 |
+
sdist/
|
29 |
+
var/
|
30 |
+
wheels/
|
31 |
+
*.egg-info/
|
32 |
+
.installed.cfg
|
33 |
+
*.egg
|
34 |
+
MANIFEST
|
35 |
+
|
36 |
+
# PyInstaller
|
37 |
+
# Usually these files are written by a python script from a template
|
38 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
39 |
+
*.manifest
|
40 |
+
*.spec
|
41 |
+
|
42 |
+
# Installer logs
|
43 |
+
pip-log.txt
|
44 |
+
pip-delete-this-directory.txt
|
45 |
+
|
46 |
+
# Unit test / coverage reports
|
47 |
+
htmlcov/
|
48 |
+
.tox/
|
49 |
+
.nox/
|
50 |
+
.coverage
|
51 |
+
.coverage.*
|
52 |
+
.cache
|
53 |
+
nosetests.xml
|
54 |
+
coverage.xml
|
55 |
+
*.cover
|
56 |
+
.hypothesis/
|
57 |
+
.pytest_cache/
|
58 |
+
|
59 |
+
# Translations
|
60 |
+
*.mo
|
61 |
+
*.pot
|
62 |
+
|
63 |
+
# Django stuff:
|
64 |
+
*.log
|
65 |
+
local_settings.py
|
66 |
+
db.sqlite3
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
target/
|
80 |
+
|
81 |
+
# Jupyter Notebook
|
82 |
+
.ipynb_checkpoints
|
83 |
+
|
84 |
+
# IPython
|
85 |
+
profile_default/
|
86 |
+
ipython_config.py
|
87 |
+
|
88 |
+
# pyenv
|
89 |
+
.python-version
|
90 |
+
|
91 |
+
# celery beat schedule file
|
92 |
+
celerybeat-schedule
|
93 |
+
|
94 |
+
# SageMath parsed files
|
95 |
+
*.sage.py
|
96 |
+
|
97 |
+
# Environments
|
98 |
+
.env
|
99 |
+
.venv
|
100 |
+
env/
|
101 |
+
venv/
|
102 |
+
ENV/
|
103 |
+
env.bak/
|
104 |
+
venv.bak/
|
105 |
+
|
106 |
+
# Spyder project settings
|
107 |
+
.spyderproject
|
108 |
+
.spyproject
|
109 |
+
|
110 |
+
# Rope project settings
|
111 |
+
.ropeproject
|
112 |
+
|
113 |
+
# mkdocs documentation
|
114 |
+
/site
|
115 |
+
|
116 |
+
# mypy
|
117 |
+
.mypy_cache/
|
118 |
+
.dmypy.json
|
119 |
+
dmypy.json
|
120 |
+
|
121 |
+
# Pyre type checker
|
122 |
+
.pyre/
|
123 |
+
|
124 |
+
# vscode
|
125 |
+
.vs
|
126 |
+
.vscode
|
127 |
+
|
128 |
+
# Pycharm
|
129 |
+
.idea
|
130 |
+
|
131 |
+
# TF code
|
132 |
+
tensorflow_code
|
133 |
+
|
134 |
+
# Models
|
135 |
+
proc_data
|
136 |
+
|
137 |
+
# examples
|
138 |
+
runs
|
139 |
+
/runs_old
|
140 |
+
/wandb
|
141 |
+
/examples/runs
|
142 |
+
/examples/**/*.args
|
143 |
+
/examples/rag/sweep
|
144 |
+
|
145 |
+
# data
|
146 |
+
/data
|
147 |
+
serialization_dir
|
148 |
+
|
149 |
+
# emacs
|
150 |
+
*.*~
|
151 |
+
debug.env
|
152 |
+
|
153 |
+
# vim
|
154 |
+
.*.swp
|
155 |
+
|
156 |
+
#ctags
|
157 |
+
tags
|
158 |
+
|
159 |
+
# pre-commit
|
160 |
+
.pre-commit*
|
161 |
+
|
162 |
+
# .lock
|
163 |
+
*.lock
|
164 |
+
|
165 |
+
# DS_Store (MacOS)
|
166 |
+
.DS_Store
|
167 |
+
|
168 |
+
# ruff
|
169 |
+
.ruff_cache
|
README.md
CHANGED
@@ -1,3 +1 @@
|
|
1 |
-
|
2 |
-
license: unlicense
|
3 |
-
---
|
|
|
1 |
+
# decoder only transformers
|
|
|
|
learning.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch # create tensors and provides helper functions
|
2 |
+
import torch.nn as nn # for nn.Module(), nn.Embedding() and nn.Linear()
|
3 |
+
import torch.nn.functional as F # gives us the softmax() and argmax()
|
4 |
+
from torch.optim import Adam # Adam optimizer, stochastic gradient descent
|
5 |
+
from torch.utils.data import TensorDataset, DataLoader # for storing data loader
|
6 |
+
|
7 |
+
# first, create a dict that maps vocabulary tokens to id numbers
|
8 |
+
token_to_id = ({
|
9 |
+
'what': 0,
|
10 |
+
'is': 1,
|
11 |
+
'your': 2,
|
12 |
+
'name': 3,
|
13 |
+
'gpt': 4,
|
14 |
+
'my': 5,
|
15 |
+
'<EOS>': 10, # END OF SEQUENCE
|
16 |
+
'<PAD>': 11, # PADDING
|
17 |
+
})
|
18 |
+
|
19 |
+
## create the dict that maps the ids to tokens, for interpretintg the model output.
|
20 |
+
id_to_token = dict(map(reversed, token_to_id.items()))
|
21 |
+
VOCAB_SIZE = len(token_to_id)
|
22 |
+
SEQ_LEN = 6
|
23 |
+
D_MODEL = 2
|
24 |
+
# we use decoder only transformer, the inputs contain
|
25 |
+
# the questions followed by <EOS> token followed by the response 'gpt'
|
26 |
+
# this is because all of the tokens will be used as inputs to the decoder only
|
27 |
+
# transformer during training.
|
28 |
+
# it's called teacher forcing
|
29 |
+
# teacher forcing helps us train the neural network faster
|
30 |
+
|
31 |
+
inputs = torch.tensor([
|
32 |
+
[
|
33 |
+
token_to_id['what'],
|
34 |
+
token_to_id['is'],
|
35 |
+
token_to_id['your'],
|
36 |
+
token_to_id['name'],
|
37 |
+
],
|
38 |
+
[
|
39 |
+
token_to_id['gpt'],
|
40 |
+
token_to_id['is'],
|
41 |
+
token_to_id['my'],
|
42 |
+
]
|
43 |
+
])
|
44 |
+
|
45 |
+
# we are using decoder only transformer the outputs, or
|
46 |
+
# the predictions, are the input questions (minus the first word) followed by
|
47 |
+
# <EOS> gpt <EOS>. the first <EOS> means we are dong processing the input question
|
48 |
+
# and the second means we are done generating the output.
|
49 |
+
labels = torch.tensor([
|
50 |
+
[
|
51 |
+
token_to_id['is'],
|
52 |
+
token_to_id['your'],
|
53 |
+
token_to_id['name'],
|
54 |
+
token_to_id['<EOS>'],
|
55 |
+
token_to_id['gpt'],
|
56 |
+
token_to_id['<EOS>'],
|
57 |
+
],
|
58 |
+
[
|
59 |
+
token_to_id['is'],
|
60 |
+
token_to_id['my'],
|
61 |
+
token_to_id['<EOS>'],
|
62 |
+
token_to_id['name'],
|
63 |
+
token_to_id['<EOS>'],
|
64 |
+
token_to_id['<PAD>'],
|
65 |
+
]
|
66 |
+
])
|
67 |
+
|
68 |
+
dataset = TensorDataset(inputs, labels)
|
69 |
+
dataloader = DataLoader(dataset=dataset)
|
70 |
+
|
71 |
+
print(f'Shape of the input: {inputs.shape}')
|
72 |
+
print(f'Shape of the labels: {labels.shape}')
|
73 |
+
|
74 |
+
x = inputs.unsqueeze(0)
|
75 |
+
y = labels.unsqueeze(0)
|
76 |
+
|
77 |
+
print(f'Batch input: {x.shape}')
|
78 |
+
print(f'Batch labels: {y.shape}')
|
model.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
A Decoder-Only Transformer components
|
3 |
+
-> Word Embedding
|
4 |
+
-> Position Encoding
|
5 |
+
-> Masked Self-Attention
|
6 |
+
-> Residual Connections
|
7 |
+
-> A fully connected layer
|
8 |
+
-> Classification Head
|
9 |
+
'''
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import math
|
13 |
+
|
14 |
+
class WordEmbeddings(nn.Module):
|
15 |
+
|
16 |
+
def __init__(self, d_model: int, vocab_size: int):
|
17 |
+
## d_model: The dimension of the transformer, which is also the number of embedding values per token.
|
18 |
+
## vocab_size: Get the size of the underlying vocabulary
|
19 |
+
|
20 |
+
super().__init__()
|
21 |
+
self.d_model = d_model
|
22 |
+
self.vocab_size = vocab_size
|
23 |
+
self.embedding = nn.Embedding(num_embeddings=vocab_size,
|
24 |
+
embedding_dim=d_model)
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
# (batch, seq_len) --> (batch, seq_len, d_model)
|
28 |
+
# multiply by sqrt(d_model) to scale the embeddings
|
29 |
+
return self.embedding(x) * math.sqrt(self.d_model)
|
30 |
+
|
31 |
+
class PositionEncoding(nn.Module):
|
32 |
+
'''Ref: https://github.com/StatQuest/decoder_transformer_from_scratch/blob/main/decoder_transformers_with_pytorch_and_lightning_v2.ipynb
|
33 |
+
'''
|
34 |
+
|
35 |
+
def __init__(self, d_model: int, seq_len: int, dropout: float):
|
36 |
+
## d_model = The dimension of the transformer, which is also the number of embedding values per token.
|
37 |
+
## In the transformer I used in the StatQuest: Transformer Neural Networks Clearly Explained!!!
|
38 |
+
## d_model=2, so that's what we'll use as a default for now.
|
39 |
+
## However, in "Attention Is All You Need" d_model=512
|
40 |
+
## seq_len = maximum number of tokens we allow as input.
|
41 |
+
## Since we are precomputing the position encoding values and storing them in a lookup table
|
42 |
+
## we can use d_model and seq_len to determine the number of rows and columns in that
|
43 |
+
## lookup table.
|
44 |
+
##
|
45 |
+
## In this simple example, we are only using short phrases, so we are using
|
46 |
+
## seq_len=6 as the default setting.
|
47 |
+
## However, in The Annotated Transformer, they set the default value for seq_len to 5000
|
48 |
+
|
49 |
+
## We call the super's init because by creating our own __init__() method, we overwrite the one
|
50 |
+
## we inherited from nn.Module. So we have to explicity call nn.Module's __init__(), otherwise it
|
51 |
+
## won't get initialized. NOTE: If we didn't write our own __init__(), then we would not have
|
52 |
+
## to call super().__init__(). Alternatively, if we didn't want to access any of nn.Module's methods,
|
53 |
+
## we wouldn't have to call it then either.
|
54 |
+
super().__init__()
|
55 |
+
|
56 |
+
self.d_model = d_model
|
57 |
+
self.seq_len = seq_len
|
58 |
+
self.dropout = nn.Dropout(dropout)
|
59 |
+
|
60 |
+
## Now we create a lookup table, pe, of position encoding values and initialize all of them to 0.
|
61 |
+
## To do this, we will make a matrix of 0s that has seq_len rows and d_model columns.
|
62 |
+
## for example...
|
63 |
+
## torch.zeros(3, 2)
|
64 |
+
## ...returns a matrix of 0s with 3 rows and 2 columns...
|
65 |
+
## tensor([[0., 0.],
|
66 |
+
## [0., 0.],
|
67 |
+
## [0., 0.]])
|
68 |
+
pe = torch.zeros(seq_len, d_model)
|
69 |
+
|
70 |
+
## Now we create a sequence of numbers for each position that a token can have in the input (or output).
|
71 |
+
## For example, if the input tokens where "I'm happy today!", then "I'm" would get the first
|
72 |
+
## position, 0, "happy" would get the second position, 1, and "today!" would get the third position, 2.
|
73 |
+
## NOTE: Since we are going to be doing math with these position indices to create the
|
74 |
+
## positional encoding for each one, we need them to be floats rather than ints.
|
75 |
+
##
|
76 |
+
## NOTE: Two ways to create floats are...
|
77 |
+
##
|
78 |
+
## torch.arange(start=0, end=3, step=1, dtype=torch.float)
|
79 |
+
##
|
80 |
+
## ...and...
|
81 |
+
##
|
82 |
+
## torch.arange(start=0, end=3, step=1).float()
|
83 |
+
##
|
84 |
+
## ...but the latter is just as clear and requires less typing.
|
85 |
+
##
|
86 |
+
## Lastly, .unsqueeze(1) converts the single list of numbers that torch.arange creates into a matrix with
|
87 |
+
## one row for each index, and all of the indices in a single column. So if "seq_len" = 3, then we
|
88 |
+
## would create a matrix with 3 rows and 1 column like this...
|
89 |
+
##
|
90 |
+
## torch.arange(start=0, end=3, step=1, dtype=torch.float).unsqueeze(1)
|
91 |
+
##
|
92 |
+
## ...returns...
|
93 |
+
##
|
94 |
+
## tensor([[0.],
|
95 |
+
## [1.],
|
96 |
+
## [2.]])
|
97 |
+
position = torch.arange(start=0, end=seq_len, step=1).float().unsqueeze(1)
|
98 |
+
|
99 |
+
|
100 |
+
## Here is where we start doing the math to determine the y-axis coordinates on the
|
101 |
+
## sine and cosine curves.
|
102 |
+
##
|
103 |
+
## The positional encoding equations used in "Attention is all you need" are...
|
104 |
+
##
|
105 |
+
## PE(pos, 2i) = sin(pos / 10000^(2i/d_model))
|
106 |
+
## PE(pos, 2i+1) = cos(pos / 10000^(2i/d_model))
|
107 |
+
##
|
108 |
+
## ...and we see, within the sin() and cos() functions, we divide "pos" by some number that depends
|
109 |
+
## on the index (i) and total number of PE values we want per token (d_model).
|
110 |
+
##
|
111 |
+
## NOTE: When the index, i, is 0 then we are calculating the y-axis coordinates on the **first pair**
|
112 |
+
## of sine and cosine curves. When i=1, then we are calculating the y-axis coordiantes on the
|
113 |
+
## **second pair** of sine and cosine curves. etc. etc.
|
114 |
+
##
|
115 |
+
## Now, pretty much everyone calculates the term we use to divide "pos" by first, and they do it with
|
116 |
+
## code that looks like this...
|
117 |
+
##
|
118 |
+
## div_term = torch.exp(torch.arange(start=0, end=d_model, step=2).float() * -(math.log(10000.0) / d_model))
|
119 |
+
##
|
120 |
+
## Now, at least to me, it's not obvious that div_term = 1/(10000^(2i/d_model)) for a few reasons:
|
121 |
+
##
|
122 |
+
## 1) div_term wraps everything in a call to torch.exp()
|
123 |
+
## 2) It uses log()
|
124 |
+
## 2) The order of the terms is different
|
125 |
+
##
|
126 |
+
## The reason for these differences is, presumably, trying to prevent underflow (getting too close to 0).
|
127 |
+
## So, to show that div_term = 1/(10000^(2i/d_model))...
|
128 |
+
##
|
129 |
+
## 1) Swap out math.log() for torch.log() (doing this requires converting 10000.0 to a tensor, which is my
|
130 |
+
## guess for why they used math.log() instead of torch.log())...
|
131 |
+
##
|
132 |
+
## torch.exp(torch.arange(start=0, end=d_model, step=2).float() * -(torch.log(torch.tensor(10000.0)) / d_model))
|
133 |
+
##
|
134 |
+
## 2) Rearrange the terms...
|
135 |
+
##
|
136 |
+
## torch.exp(-1 * (torch.log(torch.tensor(10000.0)) * torch.arange(start=0, end=d_model, step=2).float() / d_model))
|
137 |
+
##
|
138 |
+
## 3) Pull out the -1 with exp(-1 * x) = 1/exp(x)
|
139 |
+
##
|
140 |
+
## 1/torch.exp(torch.log(torch.tensor(10000.0)) * torch.arange(start=0, end=d_model, step=2).float() / d_model)
|
141 |
+
##
|
142 |
+
## 4) Use exp(a * b) = exp(a)^b to pull out the 2i/d_model term...
|
143 |
+
##
|
144 |
+
## 1/torch.exp(torch.log(torch.tensor(10000.0)))^(torch.arange(start=0, end=d_model, step=2).float() / d_model)
|
145 |
+
##
|
146 |
+
## 5) Use exp(log(x)) = x to get the original form of the denominator...
|
147 |
+
##
|
148 |
+
## 1/(torch.tensor(10000.0)^(torch.arange(start=0, end=d_model, step=2).float() / d_model))
|
149 |
+
##
|
150 |
+
## 6) Bam.
|
151 |
+
##
|
152 |
+
## So, that being said, I don't think underflow is actually that big an issue. In fact, some coder at Hugging Face
|
153 |
+
## also doesn't think so, and their code for positional encoding in DistilBERT (a streamlined version of BERT, which
|
154 |
+
## is a transformer model)
|
155 |
+
## calculates the values directly - using the form of the equation found in original Attention is all you need
|
156 |
+
## manuscript. See...
|
157 |
+
## https://github.com/huggingface/transformers/blob/455c6390938a5c737fa63e78396cedae41e4e87e/src/transformers/modeling_distilbert.py#L53
|
158 |
+
## So I think we can simplify the code, but I'm also writing all these comments to show that it is equivalent to what
|
159 |
+
## you'll see in the wild...
|
160 |
+
##
|
161 |
+
## Now let's create an index for the embedding positions to simplify the code a little more...
|
162 |
+
embedding_index = torch.arange(start=0, end=d_model, step=2).float()
|
163 |
+
## NOTE: Setting step=2 results in the same sequence numbers that we would get if we multiplied i by 2.
|
164 |
+
## So we can save ourselves a little math by just setting step=2.
|
165 |
+
|
166 |
+
## And now, finally, let's create div_term...
|
167 |
+
div_term = 1/torch.tensor(10000.0)**(embedding_index / d_model)
|
168 |
+
|
169 |
+
## Now we calculate the actual positional encoding values. Remember 'pe' was initialized as a matrix of 0s
|
170 |
+
## with seq_len (max number of input tokens) rows and d_model (number of embedding values per token) columns.
|
171 |
+
pe[:, 0::2] = torch.sin(position * div_term) ## every other column, starting with the 1st, has sin() values
|
172 |
+
pe[:, 1::2] = torch.cos(position * div_term) ## every other column, starting with the 2nd, has cos() values
|
173 |
+
## NOTE: If the notation for indexing 'pe[]' looks cryptic to you, read on...
|
174 |
+
##
|
175 |
+
## First, let's look at the general indexing notation:
|
176 |
+
##
|
177 |
+
## For each row or column in matrix we can select elements in that
|
178 |
+
## row or column with the following indexs...
|
179 |
+
##
|
180 |
+
## i:j:k = select elements between i and j with stepsize = k.
|
181 |
+
##
|
182 |
+
## ...where...
|
183 |
+
##
|
184 |
+
## i defaults to 0
|
185 |
+
## j defaults to the number of elements in the row, column or whatever.
|
186 |
+
## k defaults to 1
|
187 |
+
##
|
188 |
+
## Now that we have looked at the general notation, let's look at specific
|
189 |
+
## examples so that we can understand it.
|
190 |
+
##
|
191 |
+
## We'll start with: pe[:, 0::2]
|
192 |
+
##
|
193 |
+
## The stuff that comes before the comma (in this case ':') refers to the rows we want to select.
|
194 |
+
## The ':' before the comma means "select all rows" because we are not providing specific
|
195 |
+
## values for i, j and k and, instead, just using the default values.
|
196 |
+
##
|
197 |
+
## The stuff after the comma refers to the columns we want to select.
|
198 |
+
## In this case, we have '0::2', and that means we start with
|
199 |
+
## the first column (column = 0) and go to the end (using the default value for j)
|
200 |
+
## and we set the stepsize to 2, which means we skip every other column.
|
201 |
+
##
|
202 |
+
## Now to understand pe[:, 1::2]
|
203 |
+
##
|
204 |
+
## Again, the stuff before the comma refers to the rows, and, just like before
|
205 |
+
## we use default values for i,j and k, so we select all rows.
|
206 |
+
##
|
207 |
+
## The stuff that comes after the comma refers to the columns.
|
208 |
+
## In this case, we start with the 2nd column (column = 1), and go to the end
|
209 |
+
## (using the default value for 'j') and we set the stepsize to 2, which
|
210 |
+
## means we skip every other column.
|
211 |
+
##
|
212 |
+
## NOTE: using this ':' based notation is called "indexing" and also called "slicing"
|
213 |
+
## Add a batch dimension to the positional encoding
|
214 |
+
pe = pe.unsqueeze(0) # (1, seq_len, d_model)
|
215 |
+
## Now we "register 'pe'.
|
216 |
+
self.register_buffer('pe', pe) ## "register_buffer()" ensures that
|
217 |
+
## 'pe' will be moved to wherever the model gets
|
218 |
+
## moved to. So if the model is moved to a GPU, then,
|
219 |
+
## even though we don't need to optimize 'pe', it will
|
220 |
+
## also be moved to that GPU. This, in turn, means
|
221 |
+
## that accessing 'pe' will be relatively fast copared
|
222 |
+
## to having a GPU have to get the data from a CPU.
|
223 |
+
|
224 |
+
|
225 |
+
def forward(self, word_embeddings):
|
226 |
+
## Because this class, PositionEncoding, inherits from nn.Module, the forward() method
|
227 |
+
## is called by default when we use a PositionEncoding() object.
|
228 |
+
## In other words, after we create a PositionEncoding() object, pe = PositionEncoding(),
|
229 |
+
## then pe(word_embeddings) will call forward() and so this is where
|
230 |
+
## we will add the position encoding values to the word embedding values
|
231 |
+
## (batch, seq_len, d_model)
|
232 |
+
x = word_embeddings + (self.pe[:,:word_embeddings.shape[1], :]).requires_grad_(False)
|
233 |
+
|
234 |
+
return self.dropout(x)
|
235 |
+
|
236 |
+
class LayerNormalization(nn.Module):
|
237 |
+
|
238 |
+
def __init__(self, features: int, eps:float=10**-6) -> None:
|
239 |
+
super().__init__()
|
240 |
+
self.eps = eps
|
241 |
+
self.alpha = nn.Parameter(torch.ones(features)) # alpha is a learnable parameter
|
242 |
+
self.bias = nn.Parameter(torch.zeros(features)) # bias is a learnable parameter
|
243 |
+
|
244 |
+
def forward(self, x):
|
245 |
+
# x: (batch, seq_len, hidden_size)
|
246 |
+
# Keep the dimension for broadcasting
|
247 |
+
mean = x.mean(dim = -1, keepdim = True) # (batch, seq_len, 1)
|
248 |
+
# Keep the dimension for broadcasting
|
249 |
+
std = x.std(dim = -1, keepdim = True) # (batch, seq_len, 1)
|
250 |
+
# eps is to prevent dividing by zero or when std is very small
|
251 |
+
return self.alpha * (x - mean) / (std + self.eps) + self.bias
|
252 |
+
|
253 |
+
class MultiHeadAttentionBlock(nn.Module):
|
254 |
+
|
255 |
+
def __init__(self, d_model: int, h: int, dropout: float) -> None:
|
256 |
+
super().__init__()
|
257 |
+
# Make sure d_model is divisible by h
|
258 |
+
assert d_model % h == 0, "d_model is not divisible by h"
|
259 |
+
|
260 |
+
self.d_model = d_model # Embedding vector size
|
261 |
+
self.h = h # Number of heads
|
262 |
+
|
263 |
+
self.d_k = d_model // h # Dimension of vector seen by each head
|
264 |
+
self.w_q = nn.Linear(in_features=d_model, out_features=d_model, bias=False) # Wq
|
265 |
+
self.w_k = nn.Linear(in_features=d_model, out_features=d_model, bias=False) # Wk
|
266 |
+
self.w_v = nn.Linear(in_features=d_model, out_features=d_model, bias=False) # Wv
|
267 |
+
self.w_o = nn.Linear(in_features=d_model, out_features=d_model, bias=False) # Wo
|
268 |
+
self.dropout = nn.Dropout(dropout)
|
269 |
+
|
270 |
+
@staticmethod
|
271 |
+
def attention(query, key, value, mask, dropout: nn.Dropout):
|
272 |
+
d_k = query.shape[-1]
|
273 |
+
## (batch, h, seq_len, d_k) --> (batch, h, seq_len, seq_len)
|
274 |
+
## Compute attention scores, the equation is (q * k^T)/sqrt(d_model)
|
275 |
+
attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(d_k)
|
276 |
+
if mask is not None:
|
277 |
+
## Here we are masking out things we don't want to pay attention to,
|
278 |
+
## like tokens that come after the current token.
|
279 |
+
## We can also use masking to block out the <PAD> token,
|
280 |
+
## which is used when we have a batch of inputs sequences
|
281 |
+
## and they are not all the exact same length. Because the batch is passed
|
282 |
+
## in as a matrix, each input sequence has to have the same length, so we
|
283 |
+
## add <PAD> to the shorter sequences so that they are all as long ast the
|
284 |
+
## longest sequence.
|
285 |
+
##
|
286 |
+
## We replace <PAD>, or tokens that come after the current token
|
287 |
+
## with a very large negative number so that the SoftMax() function
|
288 |
+
## will give all masked elements an output value (or "probability") of 0.
|
289 |
+
## Write a very low value (indicating -inf) to the positions where mask == 0
|
290 |
+
attention_scores.masked_fill_(mask == 0, -1e9)
|
291 |
+
|
292 |
+
## Apply softmax to determine what percent of each token's value to
|
293 |
+
## use in the final attention values.
|
294 |
+
## (batch, h, seq_len, seq_len)
|
295 |
+
attention_scores = attention_scores.softmax(dim=-1)
|
296 |
+
|
297 |
+
if dropout is not None:
|
298 |
+
attention_scores = dropout(attention_scores)
|
299 |
+
|
300 |
+
## (batch, h, seq_len, seq_len) --> (batch, h, seq_len, d_k)
|
301 |
+
## return attention scores which can be used for visualization
|
302 |
+
return (attention_scores @ value), attention_scores
|
303 |
+
|
304 |
+
def forward(self, q, k, v, mask):
|
305 |
+
query = self.w_q(q) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
|
306 |
+
key = self.w_k(k) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
|
307 |
+
value = self.w_v(v) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
|
308 |
+
|
309 |
+
# (batch, seq_len, d_model) --> (batch, seq_len, h, d_k) --> (batch, h, seq_len, d_k)
|
310 |
+
query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2)
|
311 |
+
key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2)
|
312 |
+
value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(1, 2)
|
313 |
+
|
314 |
+
# Calculate attention
|
315 |
+
x, self.attention_scores = MultiHeadAttentionBlock.attention(query, key, value, mask, self.dropout)
|
316 |
+
|
317 |
+
# Combine all the heads together
|
318 |
+
# (batch, h, seq_len, d_k) --> (batch, seq_len, h, d_k) --> (batch, seq_len, d_model)
|
319 |
+
x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k)
|
320 |
+
|
321 |
+
# Multiply by Wo
|
322 |
+
# (batch, seq_len, d_model) --> (batch, seq_len, d_model)
|
323 |
+
return self.w_o(x)
|
324 |
+
|
325 |
+
class ResidualConnection(nn.Module):
|
326 |
+
|
327 |
+
def __init__(self, features: int, dropout: float) -> None:
|
328 |
+
super().__init__()
|
329 |
+
self.dropout = nn.Dropout(dropout)
|
330 |
+
self.norm = LayerNormalization(features)
|
331 |
+
|
332 |
+
def forward(self, x, sublayer):
|
333 |
+
return x + self.dropout(sublayer(self.norm(x)))
|
334 |
+
|
335 |
+
class FeedForwardBlock(nn.Module):
|
336 |
+
|
337 |
+
def __init__(self, d_model: int, d_ff: int, dropout: float) -> None:
|
338 |
+
super().__init__()
|
339 |
+
self.linear_1 = nn.Linear(d_model, d_ff) # w1 and b1
|
340 |
+
self.dropout = nn.Dropout(dropout)
|
341 |
+
self.linear_2 = nn.Linear(d_ff, d_model) # w2 and b2
|
342 |
+
|
343 |
+
def forward(self, x):
|
344 |
+
# (batch, seq_len, d_model) --> (batch, seq_len, d_ff) --> (batch, seq_len, d_model)
|
345 |
+
return self.linear_2(self.dropout(torch.relu(self.linear_1(x))))
|
346 |
+
|
347 |
+
class DecoderBlock(nn.Module):
|
348 |
+
|
349 |
+
def __init__(self,
|
350 |
+
features: int,
|
351 |
+
self_attention_block: MultiHeadAttentionBlock,
|
352 |
+
feed_forward_block: FeedForwardBlock,
|
353 |
+
dropout: float) -> None:
|
354 |
+
super().__init__()
|
355 |
+
self.self_attention_block = self_attention_block
|
356 |
+
self.feed_forward_block = feed_forward_block
|
357 |
+
self.residual_connections = nn.ModuleList([ResidualConnection(features, dropout) for _ in range(2)])
|
358 |
+
|
359 |
+
def forward(self, x, mask):
|
360 |
+
x = self.residual_connections[0](x, lambda x: self.self_attention_block(x, x, x, mask))
|
361 |
+
x = self.residual_connections[1](x, self.feed_forward_block)
|
362 |
+
return x
|
363 |
+
|
364 |
+
class Decoder(nn.Module):
|
365 |
+
|
366 |
+
def __init__(self, features: int, layers: nn.ModuleList) -> None:
|
367 |
+
super().__init__()
|
368 |
+
self.layers = layers
|
369 |
+
self.norm = LayerNormalization(features)
|
370 |
+
|
371 |
+
def forward(self, x, mask):
|
372 |
+
for layer in self.layers:
|
373 |
+
x = layer(x, mask)
|
374 |
+
return self.norm(x)
|
375 |
+
|
376 |
+
class ProjectionLayer(nn.Module):
|
377 |
+
|
378 |
+
def __init__(self, d_model, vocab_size):
|
379 |
+
super().__init__()
|
380 |
+
self.proj = nn.Linear(d_model, vocab_size)
|
381 |
+
|
382 |
+
def forward(self, x) -> None:
|
383 |
+
# (batch, seq_len, d_model) --> (batch, seq_len, vocab_size)
|
384 |
+
return self.proj(x)
|
385 |
+
|
386 |
+
class DecoderOnlyTransformer(nn.Module):
|
387 |
+
def __init__(self,
|
388 |
+
word_embedding: WordEmbeddings,
|
389 |
+
position_embedding: PositionEncoding,
|
390 |
+
decoder: Decoder,
|
391 |
+
projection_layer: ProjectionLayer):
|
392 |
+
super().__init__()
|
393 |
+
self.word_embedding = word_embedding
|
394 |
+
self.position_embedding = position_embedding
|
395 |
+
self.decoder = decoder
|
396 |
+
self.projection_layer = projection_layer
|
397 |
+
|
398 |
+
def decode(self, x: torch.Tensor, mask: torch.Tensor):
|
399 |
+
# x shape (batch, seq_len)
|
400 |
+
x = self.word_embedding(x)
|
401 |
+
x = self.position_embedding(x)
|
402 |
+
# x shape (batch, seq_len, d_model)
|
403 |
+
return self.decoder(x, mask)
|
404 |
+
|
405 |
+
def project(self, x):
|
406 |
+
# (batch, seq_len, vocab_size)
|
407 |
+
return self.projection_layer(x)
|
408 |
+
|
409 |
+
def build_transformer(vocab_size: int,
|
410 |
+
seq_len: int,
|
411 |
+
d_model: int=512,
|
412 |
+
N: int=6,
|
413 |
+
h: int=8,
|
414 |
+
dropout: float=0.1,
|
415 |
+
d_ff: int=2048) -> DecoderOnlyTransformer:
|
416 |
+
# Create the embedding layers
|
417 |
+
word_embedding = WordEmbeddings(d_model, vocab_size)
|
418 |
+
|
419 |
+
# Create the positional encoding layers
|
420 |
+
position_encoding = PositionEncoding(d_model, seq_len, dropout)
|
421 |
+
|
422 |
+
# Create the decoder blocks
|
423 |
+
decoder_blocks = []
|
424 |
+
for _ in range(N):
|
425 |
+
multi_head_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
|
426 |
+
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
|
427 |
+
decoder_block = DecoderBlock(d_model, multi_head_self_attention_block, feed_forward_block, dropout)
|
428 |
+
decoder_blocks.append(decoder_block)
|
429 |
+
|
430 |
+
# Create the encoder and decoder
|
431 |
+
decoder = Decoder(d_model, nn.ModuleList(decoder_blocks))
|
432 |
+
|
433 |
+
# Create the projection layer
|
434 |
+
projection_layer = ProjectionLayer(d_model, vocab_size)
|
435 |
+
|
436 |
+
# Create the transformer
|
437 |
+
transformer = DecoderOnlyTransformer(word_embedding,
|
438 |
+
position_encoding,
|
439 |
+
decoder,
|
440 |
+
projection_layer)
|
441 |
+
|
442 |
+
# Initialize the parameters
|
443 |
+
for p in transformer.parameters():
|
444 |
+
if p.dim() > 1:
|
445 |
+
nn.init.xavier_uniform_(p)
|
446 |
+
|
447 |
+
return transformer
|
448 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=4.34
|
2 |
+
numpy
|
3 |
+
tiktoken
|
4 |
+
torch
|
5 |
+
torchdata
|
6 |
+
accelerate
|
7 |
+
evaluate
|
8 |
+
rouge_score
|
9 |
+
loralib
|
10 |
+
peft
|
11 |
+
datasets
|
12 |
+
torchmetrics
|
shakespeare/data/input.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
shakespeare/data/test.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff705d970c50caa6f8b25a9f35b2c168a8dae8d81ef0963347e63327402c9d60
|
3 |
+
size 69612
|
shakespeare/data/train.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c3897b6613e06aa21e514d86d67214e3570fcfe20ccb8b983f4cb676e1d6c56
|
3 |
+
size 584160
|
shakespeare/weights/tmodel_26000.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9c59034983f6e1048d7d2d3699da8a6b4c25ead392c7c43c7eac6bdfe5a9b74
|
3 |
+
size 846393125
|
shakespeare_config.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from pathlib import Path
|
5 |
+
from transformers import GPT2Tokenizer
|
6 |
+
|
7 |
+
|
8 |
+
def get_config():
|
9 |
+
return {
|
10 |
+
"batch_size": 8,
|
11 |
+
"num_epochs": 600000,
|
12 |
+
"lr": 10**-4,
|
13 |
+
"seq_len": 350,
|
14 |
+
"d_model": 512,
|
15 |
+
"vocab_size": 50304,
|
16 |
+
"datasource": 'shakespeare',
|
17 |
+
"model_folder": "weights",
|
18 |
+
"model_basename": "tmodel_",
|
19 |
+
"preload": "latest",
|
20 |
+
"tokenizer_file": "tokenizer.json",
|
21 |
+
"experiment_name": "runs/tmodel"
|
22 |
+
}
|
23 |
+
|
24 |
+
current_directory = os.path.dirname(os.path.abspath(__file__))
|
25 |
+
|
26 |
+
def get_weights_file_path(config, epoch: str):
|
27 |
+
model_folder = f"{current_directory}/{config['datasource']}/{config['model_folder']}"
|
28 |
+
# Create the folder and subfolders if they don't exist
|
29 |
+
Path(model_folder).mkdir(parents=True, exist_ok=True)
|
30 |
+
model_filename = f"{config['model_basename']}{epoch}.pt"
|
31 |
+
return model_folder + '/' + model_filename
|
32 |
+
|
33 |
+
def get_data_folder_path(config):
|
34 |
+
model_folder = f"{current_directory}/{config['datasource']}/data"
|
35 |
+
Path(model_folder).mkdir(parents=True, exist_ok=True)
|
36 |
+
return model_folder
|
37 |
+
|
38 |
+
# Find the latest weights file in the weights folder
|
39 |
+
def latest_weights_file_path(config):
|
40 |
+
model_folder = f"{current_directory}/{config['datasource']}/{config['model_folder']}"
|
41 |
+
model_filename = f"{config['model_basename']}*"
|
42 |
+
weights_files = list(Path(model_folder).glob(model_filename))
|
43 |
+
if len(weights_files) == 0:
|
44 |
+
return None
|
45 |
+
weights_files.sort()
|
46 |
+
return str(weights_files[-1])
|
47 |
+
|
48 |
+
def get_gpt2_tokenizer(config):
|
49 |
+
tokenizer:GPT2Tokenizer = GPT2Tokenizer.from_pretrained(
|
50 |
+
pretrained_model_name_or_path="openai-community/gpt2",
|
51 |
+
model_max_length=config['seq_len'],
|
52 |
+
pad_token='[PAD]')
|
53 |
+
return tokenizer
|
54 |
+
|
55 |
+
def causal_mask(size):
|
56 |
+
mask = torch.triu(torch.ones((1, size, size)), diagonal=1).type(torch.int)
|
57 |
+
return mask==0
|
shakespeare_data.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''Ref: https://github.com/karpathy/nanoGPT/blob/master/data/shakespeare/prepare.py
|
2 |
+
'''
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
import numpy as np
|
6 |
+
from transformers import GPT2Tokenizer
|
7 |
+
from shakespeare_config import get_data_folder_path, get_config, get_gpt2_tokenizer
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
if __name__=='__main__':
|
11 |
+
config=get_config()
|
12 |
+
data_folder_path = get_data_folder_path(config=config)
|
13 |
+
# download the tiny shakespeare dataset
|
14 |
+
input_file_path = os.path.join(data_folder_path, 'input.txt')
|
15 |
+
tokenizer:GPT2Tokenizer = get_gpt2_tokenizer(config=config)
|
16 |
+
|
17 |
+
print(tokenizer.model_max_length)
|
18 |
+
|
19 |
+
if not Path(input_file_path).exists():
|
20 |
+
data_url = 'https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt'
|
21 |
+
with open(input_file_path, 'w', encoding='utf-8') as f:
|
22 |
+
f.write(requests.get(data_url).text)
|
23 |
+
|
24 |
+
data=''
|
25 |
+
with open(input_file_path, 'r', encoding='utf-8') as f:
|
26 |
+
for line in f.readlines():
|
27 |
+
if len(line.rstrip())>0:
|
28 |
+
data += ' ' + line
|
29 |
+
|
30 |
+
print(data)
|
31 |
+
n = len(data)
|
32 |
+
train_split = int(n*0.9)
|
33 |
+
train_data = data[:train_split]
|
34 |
+
test_data = data[train_split:]
|
35 |
+
|
36 |
+
train_ids = tokenizer.encode(train_data)
|
37 |
+
test_ids = tokenizer.encode(test_data)
|
38 |
+
print(f"train has {len(train_ids):,} tokens")
|
39 |
+
print(f"test has {len(test_ids):,} tokens")
|
40 |
+
|
41 |
+
# export to bin files
|
42 |
+
train_ids = np.array(train_ids, dtype=np.uint16)
|
43 |
+
test_ids = np.array(test_ids, dtype=np.uint16)
|
44 |
+
train_ids.tofile(os.path.join(data_folder_path, 'train.bin'))
|
45 |
+
test_ids.tofile(os.path.join(data_folder_path, 'test.bin'))
|
46 |
+
# train has 292,080 tokens
|
47 |
+
# test has 34,806 tokens
|
48 |
+
print(tokenizer.convert_ids_to_tokens(tokenizer.eos_token_id))
|
49 |
+
print(tokenizer.convert_ids_to_tokens(tokenizer.pad_token_id))
|
shakespeare_inference.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from shakespeare_config import (get_config,
|
2 |
+
latest_weights_file_path,
|
3 |
+
get_gpt2_tokenizer,
|
4 |
+
causal_mask,
|
5 |
+
current_directory)
|
6 |
+
import torch
|
7 |
+
import warnings
|
8 |
+
import heapq
|
9 |
+
from train import build_transformer
|
10 |
+
|
11 |
+
def predict_with_greedy_search(start_str:str)-> None:
|
12 |
+
config:dict=get_config()
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
print(f"Using device: {device}")
|
15 |
+
|
16 |
+
tokenizer = get_gpt2_tokenizer(config=config)
|
17 |
+
model = build_transformer(vocab_size=config['vocab_size'],
|
18 |
+
seq_len=config['seq_len'],
|
19 |
+
d_model=config['d_model']).to(device)
|
20 |
+
# load the pretrained weights
|
21 |
+
model_filename = latest_weights_file_path(config)
|
22 |
+
state = torch.load(model_filename)
|
23 |
+
model.load_state_dict(state['model_state_dict'])
|
24 |
+
model.eval()
|
25 |
+
|
26 |
+
output = start_str
|
27 |
+
with torch.no_grad():
|
28 |
+
start_tokens = tokenizer.encode(start_str)
|
29 |
+
print(start_tokens)
|
30 |
+
input = torch.tensor(data=start_tokens, dtype=torch.int64).unsqueeze(dim=0).to(device)
|
31 |
+
# print(input)
|
32 |
+
while input.size(1) <= config['seq_len']:
|
33 |
+
# use mask otheriwse model may generate repetitive words in prediction
|
34 |
+
mask = causal_mask(input.size(1)).to(device)
|
35 |
+
out = model.decode(input,mask)
|
36 |
+
prob = model.project(out[:, -1])
|
37 |
+
_, next_word = torch.max(prob, dim=1)
|
38 |
+
input = torch.cat(
|
39 |
+
[
|
40 |
+
input,
|
41 |
+
torch.empty(1,1).type_as(input).fill_(next_word.item()).to(device)
|
42 |
+
],
|
43 |
+
dim=1
|
44 |
+
)
|
45 |
+
output += tokenizer.decode(next_word.item())
|
46 |
+
|
47 |
+
print(f'Model output: {output}')
|
48 |
+
|
49 |
+
|
50 |
+
def predict_with_beam_search(start_str: str,
|
51 |
+
beam_width: int = 3) -> None:
|
52 |
+
config: dict = get_config()
|
53 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
54 |
+
print(f"Using device: {device}")
|
55 |
+
|
56 |
+
tokenizer = get_gpt2_tokenizer(config=config)
|
57 |
+
model = build_transformer(vocab_size=config['vocab_size'],
|
58 |
+
seq_len=config['seq_len'],
|
59 |
+
d_model=config['d_model']).to(device)
|
60 |
+
|
61 |
+
# Load the pretrained weights
|
62 |
+
model_filename = latest_weights_file_path(config)
|
63 |
+
state = torch.load(model_filename)
|
64 |
+
model.load_state_dict(state['model_state_dict'])
|
65 |
+
model.eval()
|
66 |
+
|
67 |
+
# Initial input
|
68 |
+
start_tokens = tokenizer.encode(start_str)
|
69 |
+
input = torch.tensor(data=start_tokens, dtype=torch.int64).unsqueeze(dim=0).to(device) # (1, seq_len)
|
70 |
+
|
71 |
+
# Beam search variables
|
72 |
+
beams = [(0, input, [])] # Each beam is a tuple of (score, sequence, tokens_generated)
|
73 |
+
|
74 |
+
for _ in range(config['seq_len']):
|
75 |
+
all_candidates = []
|
76 |
+
|
77 |
+
# Process each beam
|
78 |
+
for score, seq, tokens in beams:
|
79 |
+
# use mask otheriwse model may generate repetitive words in prediction
|
80 |
+
mask = causal_mask(seq.size(1)).to(device)
|
81 |
+
out = model.decode(seq, mask)
|
82 |
+
prob = model.project(out[:, -1])
|
83 |
+
|
84 |
+
# Get the top k predictions
|
85 |
+
top_k_probabilities, top_k_indices = torch.topk(prob, beam_width, dim=1)
|
86 |
+
|
87 |
+
# Generate new beams for each of the top k tokens
|
88 |
+
for i in range(beam_width):
|
89 |
+
new_token = top_k_indices[0, i].item()
|
90 |
+
new_score = score - torch.log(top_k_probabilities[0, i]).item() # We negate because we want to maximize
|
91 |
+
new_seq = torch.cat([seq, torch.tensor([[new_token]], device=device)], dim=1)
|
92 |
+
new_tokens = tokens + [new_token]
|
93 |
+
all_candidates.append((new_score, new_seq, new_tokens))
|
94 |
+
|
95 |
+
# Sort all candidates based on their score and keep the top `beam_width` beams
|
96 |
+
beams = heapq.nsmallest(beam_width, all_candidates, key=lambda x: x[0])
|
97 |
+
|
98 |
+
# Optionally, stop early if all beams end with an EOS token
|
99 |
+
if all(beam[1].shape[1] >= config['seq_len'] for beam in beams):
|
100 |
+
break
|
101 |
+
|
102 |
+
# Retrieve the best beam (with the highest score)
|
103 |
+
best_beam = beams[0]
|
104 |
+
best_tokens = best_beam[2]
|
105 |
+
|
106 |
+
# Decode the final sequence
|
107 |
+
output = tokenizer.decode(best_tokens, skip_special_tokens=True)
|
108 |
+
print(f'Model output: {output}')
|
109 |
+
|
110 |
+
if __name__ == '__main__':
|
111 |
+
warnings.filterwarnings("ignore")
|
112 |
+
start_str = 'Now sadder, that you come so'
|
113 |
+
predict_with_greedy_search(start_str=start_str)
|
114 |
+
print('--'*100)
|
115 |
+
predict_with_beam_search(start_str=start_str)
|
train.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchmetrics.classification
|
2 |
+
from torchmetrics.text import ROUGEScore
|
3 |
+
from model import build_transformer
|
4 |
+
from shakespeare_config import (get_config,
|
5 |
+
get_data_folder_path,
|
6 |
+
get_weights_file_path,
|
7 |
+
latest_weights_file_path,
|
8 |
+
current_directory,
|
9 |
+
causal_mask,
|
10 |
+
get_gpt2_tokenizer)
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from torch.utils.tensorboard import SummaryWriter
|
15 |
+
import torchmetrics
|
16 |
+
import numpy as np
|
17 |
+
import warnings
|
18 |
+
import os
|
19 |
+
from pathlib import Path
|
20 |
+
|
21 |
+
def get_model(config):
|
22 |
+
model = build_transformer(vocab_size=config['vocab_size'],
|
23 |
+
seq_len=config['seq_len'],
|
24 |
+
d_model=config['d_model'])
|
25 |
+
return model
|
26 |
+
|
27 |
+
def get_batch(split, data_dir, block_size, batch_size, device='gpu', device_type='cuda'):
|
28 |
+
# We recreate np.memmap every batch to avoid a memory leak, as per
|
29 |
+
# https://stackoverflow.com/questions/45132940/numpy-memmap-memory-usage-want-to-iterate-once/61472122#61472122
|
30 |
+
if split == 'train':
|
31 |
+
data = np.memmap(os.path.join(data_dir, 'train.bin'), dtype=np.uint16, mode='r')
|
32 |
+
else:
|
33 |
+
data = np.memmap(os.path.join(data_dir, 'test.bin'), dtype=np.uint16, mode='r')
|
34 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
35 |
+
x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
|
36 |
+
y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
|
37 |
+
# if device_type == 'cuda':
|
38 |
+
# # pin arrays x,y, which allows us to move them to GPU asynchronously (non_blocking=True)
|
39 |
+
# x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
|
40 |
+
# else:
|
41 |
+
# x, y = x.to(device), y.to(device)
|
42 |
+
return x, y
|
43 |
+
|
44 |
+
def greedy_decode(model,
|
45 |
+
input,
|
46 |
+
mask,
|
47 |
+
tokenizer,
|
48 |
+
max_len,
|
49 |
+
device):
|
50 |
+
while True:
|
51 |
+
if input.size(1) == max_len:
|
52 |
+
break
|
53 |
+
|
54 |
+
out = model.decode(input, mask)
|
55 |
+
prob = model.project(out[:, -1])
|
56 |
+
_, next_word = torch.max(prob, dim=1)
|
57 |
+
input = torch.cat(
|
58 |
+
[input, torch.empty(1,1).type_as(input).fill_(next_word.item()).to(device)],
|
59 |
+
dim=1
|
60 |
+
)
|
61 |
+
if next_word == tokenizer.eos_token_id:
|
62 |
+
break
|
63 |
+
return input.squeeze(0)
|
64 |
+
|
65 |
+
def run_validation(model,
|
66 |
+
x,
|
67 |
+
y,
|
68 |
+
tokenizer,
|
69 |
+
max_len,
|
70 |
+
device,
|
71 |
+
print_msg,
|
72 |
+
global_step,
|
73 |
+
writer,
|
74 |
+
rouge:ROUGEScore):
|
75 |
+
|
76 |
+
model.eval()
|
77 |
+
source_texts = []
|
78 |
+
expected = []
|
79 |
+
predicted = []
|
80 |
+
|
81 |
+
with torch.no_grad():
|
82 |
+
decoder_input = x.to(device) # (b, seq)
|
83 |
+
mask = causal_mask(x.size(1)).to(device) #(b,1,1,seq)
|
84 |
+
|
85 |
+
# check that batch size is 1
|
86 |
+
assert decoder_input.size(0)==1, "batch size must be 1 for validation"
|
87 |
+
|
88 |
+
model_out = greedy_decode(model,
|
89 |
+
decoder_input,
|
90 |
+
mask,
|
91 |
+
tokenizer,
|
92 |
+
max_len,
|
93 |
+
device)
|
94 |
+
|
95 |
+
source_text = tokenizer.decode(x[0])
|
96 |
+
target_text = tokenizer.decode(y[0])
|
97 |
+
model_out_text = tokenizer.decode(model_out.detach().cpu().numpy())
|
98 |
+
|
99 |
+
source_texts.append(source_text)
|
100 |
+
expected.append(target_text)
|
101 |
+
predicted.append(model_out_text)
|
102 |
+
|
103 |
+
# Print the source, target and model output
|
104 |
+
print_msg('-'*100)
|
105 |
+
print_msg(f"{f'SOURCE: ':>12}{source_text}")
|
106 |
+
print_msg(f"{f'TARGET: ':>12}{target_text}")
|
107 |
+
print_msg(f"{f'PREDICTED: ':>12}{model_out_text}")
|
108 |
+
|
109 |
+
rouge_score = rouge(predicted, expected)
|
110 |
+
print_msg(f"{f'ROUGE-1 Score: ':>12}{rouge_score['rouge1_fmeasure'].item()}")
|
111 |
+
print_msg(f"{f'ROUGE-2 Score: ':>12}{rouge_score['rouge2_fmeasure'].item()}")
|
112 |
+
print_msg(f"{f'ROUGE-L Score: ':>12}{rouge_score['rougeL_fmeasure'].item()}")
|
113 |
+
print_msg('-'*100)
|
114 |
+
|
115 |
+
if writer:
|
116 |
+
writer.add_scalar('validation ROUGE/ROUGE-1', rouge_score["rouge1_fmeasure"].item(), global_step)
|
117 |
+
writer.add_scalar('validation ROUGE/ROUGE-2', rouge_score["rouge2_fmeasure"].item(), global_step)
|
118 |
+
writer.add_scalar('validation ROUGE/ROUGE-L', rouge_score["rougeL_fmeasure"].item(), global_step)
|
119 |
+
writer.add_scalar('validation ROUGE/ROUGE-L', rouge_score["rougeLsum_fmeasure"].item(), global_step)
|
120 |
+
writer.flush()
|
121 |
+
|
122 |
+
def train_model(config):
|
123 |
+
# define the device
|
124 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.has_ms or torch.backends.mps.is_available else "cpu"
|
125 |
+
print("Using device:", device)
|
126 |
+
|
127 |
+
if (device == 'cuda'):
|
128 |
+
print(f"Device name: {torch.cuda.get_device_name(device=device.index)}")
|
129 |
+
print(f"Device memory: {torch.cuda.get_device_properties(device.index).total_memory / 1024 ** 3} GB")
|
130 |
+
elif (device == 'cpu'):
|
131 |
+
print(f"device name: <mps>")
|
132 |
+
else:
|
133 |
+
print("It's cpu")
|
134 |
+
|
135 |
+
device = torch.device(device)
|
136 |
+
|
137 |
+
# make sure the weights folder exists
|
138 |
+
Path(f"{current_directory}/{config['datasource']}_{config['model_folder']}").mkdir(parents=True, exist_ok=True)
|
139 |
+
|
140 |
+
tokenizer = get_gpt2_tokenizer(config=config)
|
141 |
+
model = get_model(config).to(device)
|
142 |
+
# tensorboard
|
143 |
+
writer = SummaryWriter(f"{current_directory}/{config['experiment_name']}")
|
144 |
+
|
145 |
+
optimizer = torch.optim.Adam(model.parameters(),
|
146 |
+
lr=config['lr'],
|
147 |
+
eps=1e-9)
|
148 |
+
rouge:ROUGEScore = ROUGEScore()
|
149 |
+
|
150 |
+
# if the user specified a model to preload before training, load it
|
151 |
+
initial_epoch = 0
|
152 |
+
global_step = 0
|
153 |
+
preload = config['preload']
|
154 |
+
model_filename = (latest_weights_file_path(config) if preload == 'latest' else get_weights_file_path(config, preload) if preload else None)
|
155 |
+
if model_filename:
|
156 |
+
print(f'Preloading model {model_filename}')
|
157 |
+
state = torch.load(model_filename)
|
158 |
+
model.load_state_dict(state['model_state_dict'])
|
159 |
+
initial_epoch = state['epoch'] + 1
|
160 |
+
optimizer.load_state_dict(state['optimizer_state_dict'])
|
161 |
+
global_step = state['global_step']
|
162 |
+
else:
|
163 |
+
print('No model to preload, starting from scratch')
|
164 |
+
|
165 |
+
loss_fn = nn.CrossEntropyLoss(ignore_index=tokenizer.convert_tokens_to_ids('[PAD]'), label_smoothing=0.1).to(device)
|
166 |
+
for epoch in range(initial_epoch, config['num_epochs']):
|
167 |
+
torch.cuda.empty_cache()
|
168 |
+
model.train()
|
169 |
+
#batch_iterator = tqdm(train_dataloader, desc=f"Processing Epoch {epoch:02d}")
|
170 |
+
X, y = get_batch(split='train',
|
171 |
+
data_dir=get_data_folder_path(config=config),
|
172 |
+
block_size=config['seq_len'],
|
173 |
+
batch_size=config['batch_size'])
|
174 |
+
print(f'length of the batch: {len(X)}, type:{X.shape}')
|
175 |
+
|
176 |
+
decoder_input = X.to(device) # (b, seq_len)
|
177 |
+
decoder_mask = causal_mask(config['seq_len']).to(device) # (1, seq_len, seq_len)
|
178 |
+
|
179 |
+
# run the tensors through the encoder, decoder and the projection layer
|
180 |
+
decoder_output = model.decode(decoder_input, decoder_mask) # (b, seq, d_model)
|
181 |
+
proj_output = model.project(decoder_output) # (B, seq_len, vocab_size)
|
182 |
+
|
183 |
+
# compare the output with the label
|
184 |
+
label = y.to(device) #(b, seq_len)
|
185 |
+
|
186 |
+
# compute the loss using a simple cross entropy
|
187 |
+
loss = loss_fn(proj_output.view(-1, config['vocab_size']),
|
188 |
+
label.view(-1))
|
189 |
+
#batch_iterator.set_postfix({"loss": f"{loss.item():6.3f}"})
|
190 |
+
print(f"loss: {loss.item():6.3f}")
|
191 |
+
|
192 |
+
# log the loss
|
193 |
+
writer.add_scalar('train loss', loss.item(), global_step)
|
194 |
+
writer.flush()
|
195 |
+
|
196 |
+
# backpropagate the loss
|
197 |
+
loss.backward()
|
198 |
+
|
199 |
+
# update the weights
|
200 |
+
optimizer.step()
|
201 |
+
optimizer.zero_grad(set_to_none=True)
|
202 |
+
|
203 |
+
global_step += 1
|
204 |
+
|
205 |
+
# run validation at the end of every epoch
|
206 |
+
X_val, y_val = get_batch(split='val',
|
207 |
+
data_dir=get_data_folder_path(config=config),
|
208 |
+
block_size=config['seq_len'],
|
209 |
+
batch_size=1)
|
210 |
+
run_validation(model,
|
211 |
+
X_val,
|
212 |
+
y_val,
|
213 |
+
tokenizer,
|
214 |
+
config['seq_len'],
|
215 |
+
device,
|
216 |
+
lambda msg: print(msg),
|
217 |
+
global_step,
|
218 |
+
writer,
|
219 |
+
rouge)
|
220 |
+
|
221 |
+
if epoch%1000==0 or epoch >= (config['num_epochs']-1):
|
222 |
+
# save the model at the end of every epoch
|
223 |
+
model_filename = get_weights_file_path(config, f"{epoch:02d}")
|
224 |
+
torch.save({
|
225 |
+
'epoch': epoch,
|
226 |
+
'model_state_dict': model.state_dict(),
|
227 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
228 |
+
'global_step': global_step
|
229 |
+
}, model_filename)
|
230 |
+
|
231 |
+
if __name__ == '__main__':
|
232 |
+
warnings.filterwarnings("ignore")
|
233 |
+
config = get_config()
|
234 |
+
train_model(config)
|