Compressed LLM Model Zone

The models are prepared by Visual Informatics Group @ University of Texas at Austin (VITA-group). Credits to Ajay Jaiswal, Zhenyu Zhang.

License: MIT License

Setup environment

pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
pip install transformers==4.31.0
pip install accelerate

How to use

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
base_model = 'llama-2-7b'
comp_method = 'magnitude_unstructured'
comp_degree = 0.2
model_path = f'vita-group/{base_model}_{comp_method}'
model = AutoModelForCausalLM.from_pretrained(
        model_path, 
        revision=f's{comp_degree}',
        torch_dtype=torch.float16, 
        low_cpu_mem_usage=True, 
        device_map="auto"
    )
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf')
input_ids = tokenizer('Hello! I am a VITA-compressed-LLM chatbot!', return_tensors='pt').input_ids
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))
Base Model Model Size Compression Method Compression Degree
0 Llama-2 7b magnitude_unstructured s0.1
1 Llama-2 7b magnitude_unstructured s0.2
2 Llama-2 7b magnitude_unstructured s0.3
3 Llama-2 7b magnitude_unstructured s0.5
4 Llama-2 7b magnitude_unstructured s0.6
5 Llama-2 7b sparsegpt_unstructured s0.1
6 Llama-2 7b sparsegpt_unstructured s0.2
7 Llama-2 7b sparsegpt_unstructured s0.3
8 Llama-2 7b sparsegpt_unstructured s0.5
9 Llama-2 7b sparsegpt_unstructured s0.6
10 Llama-2 7b wanda_unstructured s0.1
11 Llama-2 7b wanda_unstructured s0.2
12 Llama-2 7b wanda_unstructured s0.3
13 Llama-2 7b wanda_unstructured s0.5
14 Llama-2 7b wanda_unstructured s0.6
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.