BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("viggypoker1/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'Marketplace revenue increased $86.3 million to $2.0 billion in the year ended December 31, 2023 compared to the year ended December 31, 2022.',
    'How much did Marketplace revenue increase in the year ended December 31, 2023?',
    'Why did operations and support expenses decrease in 2023, and what factors offset this decrease?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7
cosine_accuracy@3 0.8286
cosine_accuracy@5 0.8786
cosine_accuracy@10 0.9086
cosine_precision@1 0.7
cosine_precision@3 0.2762
cosine_precision@5 0.1757
cosine_precision@10 0.0909
cosine_recall@1 0.7
cosine_recall@3 0.8286
cosine_recall@5 0.8786
cosine_recall@10 0.9086
cosine_ndcg@10 0.8071
cosine_mrr@10 0.7741
cosine_map@100 0.7779

Information Retrieval

Metric Value
cosine_accuracy@1 0.6943
cosine_accuracy@3 0.83
cosine_accuracy@5 0.8729
cosine_accuracy@10 0.9043
cosine_precision@1 0.6943
cosine_precision@3 0.2767
cosine_precision@5 0.1746
cosine_precision@10 0.0904
cosine_recall@1 0.6943
cosine_recall@3 0.83
cosine_recall@5 0.8729
cosine_recall@10 0.9043
cosine_ndcg@10 0.8031
cosine_mrr@10 0.7702
cosine_map@100 0.7743

Information Retrieval

Metric Value
cosine_accuracy@1 0.6829
cosine_accuracy@3 0.8243
cosine_accuracy@5 0.8657
cosine_accuracy@10 0.9043
cosine_precision@1 0.6829
cosine_precision@3 0.2748
cosine_precision@5 0.1731
cosine_precision@10 0.0904
cosine_recall@1 0.6829
cosine_recall@3 0.8243
cosine_recall@5 0.8657
cosine_recall@10 0.9043
cosine_ndcg@10 0.797
cosine_mrr@10 0.7623
cosine_map@100 0.7658

Information Retrieval

Metric Value
cosine_accuracy@1 0.68
cosine_accuracy@3 0.8086
cosine_accuracy@5 0.8514
cosine_accuracy@10 0.8843
cosine_precision@1 0.68
cosine_precision@3 0.2695
cosine_precision@5 0.1703
cosine_precision@10 0.0884
cosine_recall@1 0.68
cosine_recall@3 0.8086
cosine_recall@5 0.8514
cosine_recall@10 0.8843
cosine_ndcg@10 0.784
cosine_mrr@10 0.7516
cosine_map@100 0.7564

Information Retrieval

Metric Value
cosine_accuracy@1 0.6371
cosine_accuracy@3 0.7814
cosine_accuracy@5 0.8271
cosine_accuracy@10 0.8729
cosine_precision@1 0.6371
cosine_precision@3 0.2605
cosine_precision@5 0.1654
cosine_precision@10 0.0873
cosine_recall@1 0.6371
cosine_recall@3 0.7814
cosine_recall@5 0.8271
cosine_recall@10 0.8729
cosine_ndcg@10 0.7566
cosine_mrr@10 0.7193
cosine_map@100 0.7237

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 45.56 tokens
    • max: 512 tokens
    • min: 2 tokens
    • mean: 20.61 tokens
    • max: 42 tokens
  • Samples:
    positive anchor
    GM Financial's penetration of our retail sales in the U.S. was 42% in the year ended December 31, 2023, compared to 43% in the corresponding period in 2022. How did the penetration rate of GM Financial's retail sales in the U.S. change from 2022 to 2023?
    Net cash provided by operating activities decreased by $2.0 billion in fiscal 2022 compared to fiscal 2021. How did the cash flow from operating activities change in fiscal 2022 compared to fiscal 2021?
    Total revenues increased $8.2 billion, or 7.5%, in 2023 compared to 2022. The increase was primarily driven by pharmacy drug mix, increased prescription volume, brand inflation, and increased contributions from vaccinations. How much did total revenues increase in 2023 compared to the previous year?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

json

  • Dataset: json
  • Size: 700 evaluation samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 700 samples:
    positive anchor
    type string string
    details
    • min: 10 tokens
    • mean: 44.82 tokens
    • max: 439 tokens
    • min: 10 tokens
    • mean: 20.31 tokens
    • max: 51 tokens
  • Samples:
    positive anchor
    Using these constant rates, total revenue and advertising revenue would have been $374 million and $379 million lower than actual total revenue and advertising revenue, respectively, for the full year 2023. How much would total revenue and advertising revenue have been lower in 2023 using constant foreign exchange rates compared to actual figures?
    Interest expense increased $42.9 million to $348.8 million for the year ended December 31, 2023, compared to $305.9 million during the year ended December 31, 2022. What was the total interest expense for the year ended December 31, 2023?
    Net cash provided by operating activities increased $183.3 million in 2022 compared to 2021 primarily as a result of higher current year earnings, net of non-cash items, and smaller decreases in liability balances, partially offset by higher inventory levels and a smaller increase in accounts payable. How much did net cash provided by operating activities increase in 2022 compared to 2021?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.6144 - - - - - -
0.9746 12 - 0.2439 0.7301 0.7428 0.7539 0.6957 0.7607
1.6244 20 0.6547 - - - - - -
1.9492 24 - 0.1966 0.7496 0.7631 0.7729 0.7187 0.7733
2.4365 30 0.4734 - - - - - -
2.9239 36 - 0.1822 0.7556 0.7643 0.7743 0.7242 0.7756
3.2487 40 0.3833 - - - - - -
3.8985 48 - 0.1794 0.7564 0.7658 0.7743 0.7237 0.7779
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 1.0.1
  • Datasets: 2.19.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
0
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for viggypoker1/bge-base-financial-matryoshka

Finetuned
(343)
this model

Evaluation results