t5-summarization-zero-shot-headers-and-better-prompt

This model is a fine-tuned version of google/flan-t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2226
  • Rouge: {'rouge1': 0.4351, 'rouge2': 0.2124, 'rougeL': 0.215, 'rougeLsum': 0.215}
  • Bert Score: 0.8806
  • Bleurt 20: -0.7502
  • Gen Len: 14.645

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 7
  • eval_batch_size: 7
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Rouge Bert Score Bleurt 20 Gen Len
3.0683 1.0 186 2.5857 {'rouge1': 0.4573, 'rouge2': 0.1803, 'rougeL': 0.1858, 'rougeLsum': 0.1858} 0.8683 -0.8521 15.445
2.7283 2.0 372 2.4092 {'rouge1': 0.446, 'rouge2': 0.1853, 'rougeL': 0.1969, 'rougeLsum': 0.1969} 0.8709 -0.828 15.115
2.4766 3.0 558 2.3190 {'rouge1': 0.4183, 'rouge2': 0.1834, 'rougeL': 0.1947, 'rougeLsum': 0.1947} 0.869 -0.8673 14.425
2.351 4.0 744 2.2736 {'rouge1': 0.4264, 'rouge2': 0.1843, 'rougeL': 0.1919, 'rougeLsum': 0.1919} 0.8693 -0.8411 15.205
2.287 5.0 930 2.2440 {'rouge1': 0.42, 'rouge2': 0.1924, 'rougeL': 0.1991, 'rougeLsum': 0.1991} 0.875 -0.8358 14.305
2.1426 6.0 1116 2.2100 {'rouge1': 0.4196, 'rouge2': 0.1903, 'rougeL': 0.2027, 'rougeLsum': 0.2027} 0.8779 -0.8189 14.38
2.0381 7.0 1302 2.2171 {'rouge1': 0.459, 'rouge2': 0.2143, 'rougeL': 0.2142, 'rougeLsum': 0.2142} 0.8772 -0.7757 14.825
1.9927 8.0 1488 2.2106 {'rouge1': 0.44, 'rouge2': 0.2073, 'rougeL': 0.2132, 'rougeLsum': 0.2132} 0.8795 -0.7798 14.53
1.9347 9.0 1674 2.1976 {'rouge1': 0.4289, 'rouge2': 0.2062, 'rougeL': 0.2122, 'rougeLsum': 0.2122} 0.88 -0.7774 14.14
1.8733 10.0 1860 2.1987 {'rouge1': 0.4472, 'rouge2': 0.215, 'rougeL': 0.2124, 'rougeLsum': 0.2124} 0.8791 -0.7688 14.49
1.7883 11.0 2046 2.1963 {'rouge1': 0.4375, 'rouge2': 0.2114, 'rougeL': 0.2064, 'rougeLsum': 0.2064} 0.8786 -0.785 14.66
1.8253 12.0 2232 2.2055 {'rouge1': 0.4351, 'rouge2': 0.2073, 'rougeL': 0.2106, 'rougeLsum': 0.2106} 0.8803 -0.7759 14.59
1.7751 13.0 2418 2.2029 {'rouge1': 0.4371, 'rouge2': 0.2125, 'rougeL': 0.2119, 'rougeLsum': 0.2119} 0.8796 -0.7711 14.7
1.7087 14.0 2604 2.2073 {'rouge1': 0.448, 'rouge2': 0.2211, 'rougeL': 0.2176, 'rougeLsum': 0.2176} 0.8806 -0.7492 14.695
1.7034 15.0 2790 2.2150 {'rouge1': 0.4381, 'rouge2': 0.214, 'rougeL': 0.2158, 'rougeLsum': 0.2158} 0.8809 -0.7611 14.555
1.6671 16.0 2976 2.2211 {'rouge1': 0.4388, 'rouge2': 0.2162, 'rougeL': 0.2169, 'rougeLsum': 0.2169} 0.8797 -0.7532 14.73
1.6964 17.0 3162 2.2207 {'rouge1': 0.4316, 'rouge2': 0.2117, 'rougeL': 0.2137, 'rougeLsum': 0.2137} 0.8799 -0.7729 14.54
1.6556 18.0 3348 2.2183 {'rouge1': 0.4379, 'rouge2': 0.2122, 'rougeL': 0.2163, 'rougeLsum': 0.2163} 0.8804 -0.7475 14.735
1.6391 19.0 3534 2.2200 {'rouge1': 0.4332, 'rouge2': 0.2105, 'rougeL': 0.2149, 'rougeLsum': 0.2149} 0.8805 -0.7521 14.635
1.6309 20.0 3720 2.2226 {'rouge1': 0.4351, 'rouge2': 0.2124, 'rougeL': 0.215, 'rougeLsum': 0.215} 0.8806 -0.7502 14.645

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
89
Safetensors
Model size
77M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for veronica-girolimetti/t5-summarization-zero-shot-headers-and-better-prompt

Finetuned
(342)
this model