mmlw-roberta-base-klej-dyk-v0.1
This is a sentence-transformers model finetuned from sdadas/mmlw-roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sdadas/mmlw-roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Dalsze losy relikwii',
'Losy relikwii świętego',
'czemu gra The Saboteur wywołała wiele kontrowersji?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1899 |
cosine_accuracy@3 | 0.5865 |
cosine_accuracy@5 | 0.7692 |
cosine_accuracy@10 | 0.8534 |
cosine_precision@1 | 0.1899 |
cosine_precision@3 | 0.1955 |
cosine_precision@5 | 0.1538 |
cosine_precision@10 | 0.0853 |
cosine_recall@1 | 0.1899 |
cosine_recall@3 | 0.5865 |
cosine_recall@5 | 0.7692 |
cosine_recall@10 | 0.8534 |
cosine_ndcg@10 | 0.5205 |
cosine_mrr@10 | 0.4128 |
cosine_map@100 | 0.4182 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1875 |
cosine_accuracy@3 | 0.5889 |
cosine_accuracy@5 | 0.7596 |
cosine_accuracy@10 | 0.863 |
cosine_precision@1 | 0.1875 |
cosine_precision@3 | 0.1963 |
cosine_precision@5 | 0.1519 |
cosine_precision@10 | 0.0863 |
cosine_recall@1 | 0.1875 |
cosine_recall@3 | 0.5889 |
cosine_recall@5 | 0.7596 |
cosine_recall@10 | 0.863 |
cosine_ndcg@10 | 0.5204 |
cosine_mrr@10 | 0.4101 |
cosine_map@100 | 0.4148 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1947 |
cosine_accuracy@3 | 0.5649 |
cosine_accuracy@5 | 0.7452 |
cosine_accuracy@10 | 0.8462 |
cosine_precision@1 | 0.1947 |
cosine_precision@3 | 0.1883 |
cosine_precision@5 | 0.149 |
cosine_precision@10 | 0.0846 |
cosine_recall@1 | 0.1947 |
cosine_recall@3 | 0.5649 |
cosine_recall@5 | 0.7452 |
cosine_recall@10 | 0.8462 |
cosine_ndcg@10 | 0.5145 |
cosine_mrr@10 | 0.4078 |
cosine_map@100 | 0.4131 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1827 |
cosine_accuracy@3 | 0.5192 |
cosine_accuracy@5 | 0.7163 |
cosine_accuracy@10 | 0.8293 |
cosine_precision@1 | 0.1827 |
cosine_precision@3 | 0.1731 |
cosine_precision@5 | 0.1433 |
cosine_precision@10 | 0.0829 |
cosine_recall@1 | 0.1827 |
cosine_recall@3 | 0.5192 |
cosine_recall@5 | 0.7163 |
cosine_recall@10 | 0.8293 |
cosine_ndcg@10 | 0.4955 |
cosine_mrr@10 | 0.3889 |
cosine_map@100 | 0.394 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.1779 |
cosine_accuracy@3 | 0.4832 |
cosine_accuracy@5 | 0.6514 |
cosine_accuracy@10 | 0.774 |
cosine_precision@1 | 0.1779 |
cosine_precision@3 | 0.1611 |
cosine_precision@5 | 0.1303 |
cosine_precision@10 | 0.0774 |
cosine_recall@1 | 0.1779 |
cosine_recall@3 | 0.4832 |
cosine_recall@5 | 0.6514 |
cosine_recall@10 | 0.774 |
cosine_ndcg@10 | 0.4639 |
cosine_mrr@10 | 0.3654 |
cosine_map@100 | 0.3728 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,738 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 5 tokens
- mean: 50.1 tokens
- max: 466 tokens
- min: 6 tokens
- mean: 16.62 tokens
- max: 49 tokens
- Samples:
positive anchor Zespół Blaua (zespół Jabsa, ang. Blau syndrome, BS) – rzadka choroba genetyczna o dziedziczeniu autosomalnym dominującym, charakteryzująca się ziarniniakowym zapaleniem stawów o wczesnym początku, zapaleniem jagodówki (uveitis) i wysypką skórną, a także kamptodaktylią.
jakie choroby genetyczne dziedziczą się autosomalnie dominująco?
Gorgippia Gorgippia – starożytne miasto bosporańskie nad Morzem Czarnym, którego pozostałości znajdują się obecnie pod współczesną zabudową centralnej części miasta Anapa w Kraju Krasnodarskim w Rosji.
gdzie obecnie znajduje się starożytne miasto Gorgippia?
Ulubionym dystansem Rücker było 400 metrów i to na nim notowała największe indywidualne sukcesy : srebrny medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) 6. miejsce w Pucharze Świata w Lekkoatletyce (Hawana 1992) 5. miejsce na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) srebro podczas Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) złota medalistka mistrzostw Niemiec Duże sukcesy odnosiła także w sztafecie 4 x 400 metrów : złoto Mistrzostw Europy juniorów w lekkoatletyce (Varaždin 1989) złoty medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) brąz na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) brązowy medal podczas Igrzysk Olimpijskich (Atlanta 1996) brąz na Halowych Mistrzostwach Świata w Lekkoatletyce (Paryż 1997) złoto Mistrzostw Świata w Lekkoatletyce (Ateny 1997) brązowy medal Mistrzostw Świata w Lekkoatletyce (Sewilla 1999)
kto zaprojektował medale, które będą wręczane podczas tegorocznych mistrzostw Europy juniorów w lekkoatletyce?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochgradient_accumulation_steps
: 8learning_rate
: 2e-05num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|---|
0 | 0 | - | 0.3475 | 0.3675 | 0.3753 | 0.2982 | 0.3798 |
0.0171 | 1 | 2.6683 | - | - | - | - | - |
0.0342 | 2 | 3.2596 | - | - | - | - | - |
0.0513 | 3 | 3.4541 | - | - | - | - | - |
0.0684 | 4 | 2.4201 | - | - | - | - | - |
0.0855 | 5 | 3.5911 | - | - | - | - | - |
0.1026 | 6 | 3.0902 | - | - | - | - | - |
0.1197 | 7 | 2.5999 | - | - | - | - | - |
0.1368 | 8 | 2.892 | - | - | - | - | - |
0.1538 | 9 | 2.8722 | - | - | - | - | - |
0.1709 | 10 | 2.3703 | - | - | - | - | - |
0.1880 | 11 | 2.6833 | - | - | - | - | - |
0.2051 | 12 | 1.9814 | - | - | - | - | - |
0.2222 | 13 | 1.6643 | - | - | - | - | - |
0.2393 | 14 | 1.8493 | - | - | - | - | - |
0.2564 | 15 | 1.5136 | - | - | - | - | - |
0.2735 | 16 | 1.9726 | - | - | - | - | - |
0.2906 | 17 | 1.1505 | - | - | - | - | - |
0.3077 | 18 | 1.3834 | - | - | - | - | - |
0.3248 | 19 | 1.2244 | - | - | - | - | - |
0.3419 | 20 | 1.2107 | - | - | - | - | - |
0.3590 | 21 | 0.8936 | - | - | - | - | - |
0.3761 | 22 | 0.8144 | - | - | - | - | - |
0.3932 | 23 | 0.8353 | - | - | - | - | - |
0.4103 | 24 | 1.572 | - | - | - | - | - |
0.4274 | 25 | 0.9257 | - | - | - | - | - |
0.4444 | 26 | 0.8405 | - | - | - | - | - |
0.4615 | 27 | 0.5621 | - | - | - | - | - |
0.4786 | 28 | 0.4241 | - | - | - | - | - |
0.4957 | 29 | 0.6171 | - | - | - | - | - |
0.5128 | 30 | 0.5989 | - | - | - | - | - |
0.5299 | 31 | 0.2767 | - | - | - | - | - |
0.5470 | 32 | 0.5599 | - | - | - | - | - |
0.5641 | 33 | 0.5964 | - | - | - | - | - |
0.5812 | 34 | 0.9778 | - | - | - | - | - |
0.5983 | 35 | 0.772 | - | - | - | - | - |
0.6154 | 36 | 1.0341 | - | - | - | - | - |
0.6325 | 37 | 0.3503 | - | - | - | - | - |
0.6496 | 38 | 0.8229 | - | - | - | - | - |
0.6667 | 39 | 0.969 | - | - | - | - | - |
0.6838 | 40 | 1.7993 | - | - | - | - | - |
0.7009 | 41 | 0.5542 | - | - | - | - | - |
0.7179 | 42 | 1.332 | - | - | - | - | - |
0.7350 | 43 | 1.1516 | - | - | - | - | - |
0.7521 | 44 | 1.3183 | - | - | - | - | - |
0.7692 | 45 | 1.0865 | - | - | - | - | - |
0.7863 | 46 | 0.6204 | - | - | - | - | - |
0.8034 | 47 | 0.7541 | - | - | - | - | - |
0.8205 | 48 | 0.9362 | - | - | - | - | - |
0.8376 | 49 | 0.3979 | - | - | - | - | - |
0.8547 | 50 | 0.7187 | - | - | - | - | - |
0.8718 | 51 | 0.9217 | - | - | - | - | - |
0.8889 | 52 | 0.4866 | - | - | - | - | - |
0.9060 | 53 | 0.355 | - | - | - | - | - |
0.9231 | 54 | 0.7172 | - | - | - | - | - |
0.9402 | 55 | 0.6007 | - | - | - | - | - |
0.9573 | 56 | 1.1547 | - | - | - | - | - |
0.9744 | 57 | 0.5713 | - | - | - | - | - |
0.9915 | 58 | 0.9089 | 0.3985 | 0.4164 | 0.4264 | 0.3642 | 0.4255 |
1.0085 | 59 | 0.594 | - | - | - | - | - |
1.0256 | 60 | 0.6554 | - | - | - | - | - |
1.0427 | 61 | 0.2794 | - | - | - | - | - |
1.0598 | 62 | 0.8654 | - | - | - | - | - |
1.0769 | 63 | 0.9698 | - | - | - | - | - |
1.0940 | 64 | 1.4827 | - | - | - | - | - |
1.1111 | 65 | 0.3159 | - | - | - | - | - |
1.1282 | 66 | 0.255 | - | - | - | - | - |
1.1453 | 67 | 0.9819 | - | - | - | - | - |
1.1624 | 68 | 0.7442 | - | - | - | - | - |
1.1795 | 69 | 0.8199 | - | - | - | - | - |
1.1966 | 70 | 0.2647 | - | - | - | - | - |
1.2137 | 71 | 0.4098 | - | - | - | - | - |
1.2308 | 72 | 0.1608 | - | - | - | - | - |
1.2479 | 73 | 0.2092 | - | - | - | - | - |
1.2650 | 74 | 0.1231 | - | - | - | - | - |
1.2821 | 75 | 0.3203 | - | - | - | - | - |
1.2991 | 76 | 0.1435 | - | - | - | - | - |
1.3162 | 77 | 0.2293 | - | - | - | - | - |
1.3333 | 78 | 0.131 | - | - | - | - | - |
1.3504 | 79 | 0.1662 | - | - | - | - | - |
1.3675 | 80 | 0.094 | - | - | - | - | - |
1.3846 | 81 | 0.1454 | - | - | - | - | - |
1.4017 | 82 | 0.3096 | - | - | - | - | - |
1.4188 | 83 | 0.3188 | - | - | - | - | - |
1.4359 | 84 | 0.1156 | - | - | - | - | - |
1.4530 | 85 | 0.0581 | - | - | - | - | - |
1.4701 | 86 | 0.0543 | - | - | - | - | - |
1.4872 | 87 | 0.0427 | - | - | - | - | - |
1.5043 | 88 | 0.07 | - | - | - | - | - |
1.5214 | 89 | 0.0451 | - | - | - | - | - |
1.5385 | 90 | 0.0646 | - | - | - | - | - |
1.5556 | 91 | 0.1152 | - | - | - | - | - |
1.5726 | 92 | 0.1292 | - | - | - | - | - |
1.5897 | 93 | 0.1591 | - | - | - | - | - |
1.6068 | 94 | 0.1194 | - | - | - | - | - |
1.6239 | 95 | 0.0876 | - | - | - | - | - |
1.6410 | 96 | 0.1018 | - | - | - | - | - |
1.6581 | 97 | 0.3309 | - | - | - | - | - |
1.6752 | 98 | 0.2214 | - | - | - | - | - |
1.6923 | 99 | 0.1536 | - | - | - | - | - |
1.7094 | 100 | 0.1543 | - | - | - | - | - |
1.7265 | 101 | 0.3663 | - | - | - | - | - |
1.7436 | 102 | 0.2719 | - | - | - | - | - |
1.7607 | 103 | 0.1379 | - | - | - | - | - |
1.7778 | 104 | 0.0479 | - | - | - | - | - |
1.7949 | 105 | 0.0757 | - | - | - | - | - |
1.8120 | 106 | 0.059 | - | - | - | - | - |
1.8291 | 107 | 0.119 | - | - | - | - | - |
1.8462 | 108 | 0.1295 | - | - | - | - | - |
1.8632 | 109 | 0.115 | - | - | - | - | - |
1.8803 | 110 | 0.142 | - | - | - | - | - |
1.8974 | 111 | 0.1064 | - | - | - | - | - |
1.9145 | 112 | 0.0959 | - | - | - | - | - |
1.9316 | 113 | 0.0839 | - | - | - | - | - |
1.9487 | 114 | 0.1762 | - | - | - | - | - |
1.9658 | 115 | 0.1986 | - | - | - | - | - |
1.9829 | 116 | 0.0599 | - | - | - | - | - |
2.0 | 117 | 0.1145 | 0.3869 | 0.4095 | 0.4135 | 0.3664 | 0.4195 |
2.0171 | 118 | 0.0815 | - | - | - | - | - |
2.0342 | 119 | 0.1052 | - | - | - | - | - |
2.0513 | 120 | 0.1348 | - | - | - | - | - |
2.0684 | 121 | 0.255 | - | - | - | - | - |
2.0855 | 122 | 0.251 | - | - | - | - | - |
2.1026 | 123 | 0.3033 | - | - | - | - | - |
2.1197 | 124 | 0.0385 | - | - | - | - | - |
2.1368 | 125 | 0.0687 | - | - | - | - | - |
2.1538 | 126 | 0.1682 | - | - | - | - | - |
2.1709 | 127 | 0.0774 | - | - | - | - | - |
2.1880 | 128 | 0.0944 | - | - | - | - | - |
2.2051 | 129 | 0.036 | - | - | - | - | - |
2.2222 | 130 | 0.0393 | - | - | - | - | - |
2.2393 | 131 | 0.0387 | - | - | - | - | - |
2.2564 | 132 | 0.0273 | - | - | - | - | - |
2.2735 | 133 | 0.056 | - | - | - | - | - |
2.2906 | 134 | 0.0279 | - | - | - | - | - |
2.3077 | 135 | 0.0557 | - | - | - | - | - |
2.3248 | 136 | 0.0197 | - | - | - | - | - |
2.3419 | 137 | 0.0216 | - | - | - | - | - |
2.3590 | 138 | 0.0212 | - | - | - | - | - |
2.3761 | 139 | 0.0239 | - | - | - | - | - |
2.3932 | 140 | 0.0526 | - | - | - | - | - |
2.4103 | 141 | 0.1072 | - | - | - | - | - |
2.4274 | 142 | 0.0347 | - | - | - | - | - |
2.4444 | 143 | 0.024 | - | - | - | - | - |
2.4615 | 144 | 0.0128 | - | - | - | - | - |
2.4786 | 145 | 0.0089 | - | - | - | - | - |
2.4957 | 146 | 0.0101 | - | - | - | - | - |
2.5128 | 147 | 0.0124 | - | - | - | - | - |
2.5299 | 148 | 0.011 | - | - | - | - | - |
2.5470 | 149 | 0.0182 | - | - | - | - | - |
2.5641 | 150 | 0.0379 | - | - | - | - | - |
2.5812 | 151 | 0.0395 | - | - | - | - | - |
2.5983 | 152 | 0.0372 | - | - | - | - | - |
2.6154 | 153 | 0.031 | - | - | - | - | - |
2.6325 | 154 | 0.0136 | - | - | - | - | - |
2.6496 | 155 | 0.0355 | - | - | - | - | - |
2.6667 | 156 | 0.0296 | - | - | - | - | - |
2.6838 | 157 | 0.0473 | - | - | - | - | - |
2.7009 | 158 | 0.0295 | - | - | - | - | - |
2.7179 | 159 | 0.0576 | - | - | - | - | - |
2.7350 | 160 | 0.0592 | - | - | - | - | - |
2.7521 | 161 | 0.0571 | - | - | - | - | - |
2.7692 | 162 | 0.0221 | - | - | - | - | - |
2.7863 | 163 | 0.0179 | - | - | - | - | - |
2.8034 | 164 | 0.0195 | - | - | - | - | - |
2.8205 | 165 | 0.0291 | - | - | - | - | - |
2.8376 | 166 | 0.024 | - | - | - | - | - |
2.8547 | 167 | 0.0396 | - | - | - | - | - |
2.8718 | 168 | 0.0352 | - | - | - | - | - |
2.8889 | 169 | 0.0431 | - | - | - | - | - |
2.9060 | 170 | 0.0222 | - | - | - | - | - |
2.9231 | 171 | 0.016 | - | - | - | - | - |
2.9402 | 172 | 0.0307 | - | - | - | - | - |
2.9573 | 173 | 0.0439 | - | - | - | - | - |
2.9744 | 174 | 0.0197 | - | - | - | - | - |
2.9915 | 175 | 0.0181 | 0.3928 | 0.4120 | 0.4152 | 0.3717 | 0.4180 |
3.0085 | 176 | 0.03 | - | - | - | - | - |
3.0256 | 177 | 0.0325 | - | - | - | - | - |
3.0427 | 178 | 0.0286 | - | - | - | - | - |
3.0598 | 179 | 0.0746 | - | - | - | - | - |
3.0769 | 180 | 0.0677 | - | - | - | - | - |
3.0940 | 181 | 0.0574 | - | - | - | - | - |
3.1111 | 182 | 0.0158 | - | - | - | - | - |
3.1282 | 183 | 0.0092 | - | - | - | - | - |
3.1453 | 184 | 0.0412 | - | - | - | - | - |
3.1624 | 185 | 0.0308 | - | - | - | - | - |
3.1795 | 186 | 0.022 | - | - | - | - | - |
3.1966 | 187 | 0.0157 | - | - | - | - | - |
3.2137 | 188 | 0.0109 | - | - | - | - | - |
3.2308 | 189 | 0.0059 | - | - | - | - | - |
3.2479 | 190 | 0.0206 | - | - | - | - | - |
3.2650 | 191 | 0.0135 | - | - | - | - | - |
3.2821 | 192 | 0.0199 | - | - | - | - | - |
3.2991 | 193 | 0.0124 | - | - | - | - | - |
3.3162 | 194 | 0.0081 | - | - | - | - | - |
3.3333 | 195 | 0.0052 | - | - | - | - | - |
3.3504 | 196 | 0.006 | - | - | - | - | - |
3.3675 | 197 | 0.0074 | - | - | - | - | - |
3.3846 | 198 | 0.0085 | - | - | - | - | - |
3.4017 | 199 | 0.0273 | - | - | - | - | - |
3.4188 | 200 | 0.0363 | - | - | - | - | - |
3.4359 | 201 | 0.0077 | - | - | - | - | - |
3.4530 | 202 | 0.0046 | - | - | - | - | - |
3.4701 | 203 | 0.0067 | - | - | - | - | - |
3.4872 | 204 | 0.0054 | - | - | - | - | - |
3.5043 | 205 | 0.0055 | - | - | - | - | - |
3.5214 | 206 | 0.0052 | - | - | - | - | - |
3.5385 | 207 | 0.004 | - | - | - | - | - |
3.5556 | 208 | 0.0102 | - | - | - | - | - |
3.5726 | 209 | 0.0228 | - | - | - | - | - |
3.5897 | 210 | 0.0315 | - | - | - | - | - |
3.6068 | 211 | 0.0095 | - | - | - | - | - |
3.6239 | 212 | 0.0069 | - | - | - | - | - |
3.6410 | 213 | 0.0066 | - | - | - | - | - |
3.6581 | 214 | 0.0395 | - | - | - | - | - |
3.6752 | 215 | 0.0176 | - | - | - | - | - |
3.6923 | 216 | 0.0156 | - | - | - | - | - |
3.7094 | 217 | 0.0168 | - | - | - | - | - |
3.7265 | 218 | 0.0376 | - | - | - | - | - |
3.7436 | 219 | 0.0149 | - | - | - | - | - |
3.7607 | 220 | 0.0179 | - | - | - | - | - |
3.7778 | 221 | 0.0059 | - | - | - | - | - |
3.7949 | 222 | 0.013 | - | - | - | - | - |
3.8120 | 223 | 0.0081 | - | - | - | - | - |
3.8291 | 224 | 0.0136 | - | - | - | - | - |
3.8462 | 225 | 0.0129 | - | - | - | - | - |
3.8632 | 226 | 0.0132 | - | - | - | - | - |
3.8803 | 227 | 0.0228 | - | - | - | - | - |
3.8974 | 228 | 0.0091 | - | - | - | - | - |
3.9145 | 229 | 0.0112 | - | - | - | - | - |
3.9316 | 230 | 0.0124 | - | - | - | - | - |
3.9487 | 231 | 0.0224 | - | - | - | - | - |
3.9658 | 232 | 0.0191 | - | - | - | - | - |
3.9829 | 233 | 0.0078 | - | - | - | - | - |
4.0 | 234 | 0.0145 | 0.3959 | 0.411 | 0.4154 | 0.3741 | 0.4179 |
4.0171 | 235 | 0.0089 | - | - | - | - | - |
4.0342 | 236 | 0.0157 | - | - | - | - | - |
4.0513 | 237 | 0.019 | - | - | - | - | - |
4.0684 | 238 | 0.0315 | - | - | - | - | - |
4.0855 | 239 | 0.0311 | - | - | - | - | - |
4.1026 | 240 | 0.0155 | - | - | - | - | - |
4.1197 | 241 | 0.0078 | - | - | - | - | - |
4.1368 | 242 | 0.0069 | - | - | - | - | - |
4.1538 | 243 | 0.0246 | - | - | - | - | - |
4.1709 | 244 | 0.011 | - | - | - | - | - |
4.1880 | 245 | 0.0169 | - | - | - | - | - |
4.2051 | 246 | 0.0065 | - | - | - | - | - |
4.2222 | 247 | 0.0093 | - | - | - | - | - |
4.2393 | 248 | 0.0059 | - | - | - | - | - |
4.2564 | 249 | 0.0072 | - | - | - | - | - |
4.2735 | 250 | 0.0114 | - | - | - | - | - |
4.2906 | 251 | 0.0048 | - | - | - | - | - |
4.3077 | 252 | 0.0099 | - | - | - | - | - |
4.3248 | 253 | 0.0061 | - | - | - | - | - |
4.3419 | 254 | 0.005 | - | - | - | - | - |
4.3590 | 255 | 0.0077 | - | - | - | - | - |
4.3761 | 256 | 0.0057 | - | - | - | - | - |
4.3932 | 257 | 0.0106 | - | - | - | - | - |
4.4103 | 258 | 0.0176 | - | - | - | - | - |
4.4274 | 259 | 0.0085 | - | - | - | - | - |
4.4444 | 260 | 0.0059 | - | - | - | - | - |
4.4615 | 261 | 0.0063 | - | - | - | - | - |
4.4786 | 262 | 0.003 | - | - | - | - | - |
4.4957 | 263 | 0.0041 | - | - | - | - | - |
4.5128 | 264 | 0.0048 | - | - | - | - | - |
4.5299 | 265 | 0.0037 | - | - | - | - | - |
4.5470 | 266 | 0.0052 | - | - | - | - | - |
4.5641 | 267 | 0.0084 | - | - | - | - | - |
4.5812 | 268 | 0.0183 | - | - | - | - | - |
4.5983 | 269 | 0.0065 | - | - | - | - | - |
4.6154 | 270 | 0.0074 | - | - | - | - | - |
4.6325 | 271 | 0.0046 | - | - | - | - | - |
4.6496 | 272 | 0.009 | - | - | - | - | - |
4.6667 | 273 | 0.01 | - | - | - | - | - |
4.6838 | 274 | 0.0158 | - | - | - | - | - |
4.7009 | 275 | 0.0077 | - | - | - | - | - |
4.7179 | 276 | 0.0259 | - | - | - | - | - |
4.7350 | 277 | 0.0204 | - | - | - | - | - |
4.7521 | 278 | 0.0155 | - | - | - | - | - |
4.7692 | 279 | 0.0101 | - | - | - | - | - |
4.7863 | 280 | 0.0062 | - | - | - | - | - |
4.8034 | 281 | 0.0065 | - | - | - | - | - |
4.8205 | 282 | 0.0115 | - | - | - | - | - |
4.8376 | 283 | 0.0088 | - | - | - | - | - |
4.8547 | 284 | 0.0157 | - | - | - | - | - |
4.8718 | 285 | 0.0145 | - | - | - | - | - |
4.8889 | 286 | 0.0122 | - | - | - | - | - |
4.9060 | 287 | 0.007 | - | - | - | - | - |
4.9231 | 288 | 0.0126 | - | - | - | - | - |
4.9402 | 289 | 0.0094 | - | - | - | - | - |
4.9573 | 290 | 0.016 | 0.3940 | 0.4131 | 0.4148 | 0.3728 | 0.4182 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for ve88ifz2/mmlw-roberta-base-klej-dyk-v0.1
Base model
sdadas/mmlw-roberta-baseEvaluation results
- Cosine Accuracy@1 on dim 768self-reported0.190
- Cosine Accuracy@3 on dim 768self-reported0.587
- Cosine Accuracy@5 on dim 768self-reported0.769
- Cosine Accuracy@10 on dim 768self-reported0.853
- Cosine Precision@1 on dim 768self-reported0.190
- Cosine Precision@3 on dim 768self-reported0.196
- Cosine Precision@5 on dim 768self-reported0.154
- Cosine Precision@10 on dim 768self-reported0.085
- Cosine Recall@1 on dim 768self-reported0.190
- Cosine Recall@3 on dim 768self-reported0.587