Built with Axolotl

See axolotl config

axolotl version: 0.6.0

adapter: qlora
base_model: NousResearch/Meta-Llama-3.1-8B
bf16: auto
dataset_prepared_path: last_run_prepared
datasets:
- path: tatsu-lab/alpaca
  type: alpaca
debug: null
deepspeed: null
early_stopping_patience: null
eval_sample_packing: true
eval_table_size: null
evals_per_epoch: 1
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
learning_rate: 2e-5
load_in_4bit: true
load_in_8bit: false
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_modules_to_save:
- embed_tokens
- lm_head
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
output_dir: ./outputs/lora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: 1
sdp_attention: true
sequence_len: 2048
special_tokens:
  pad_token: <|end_of_text|>
strict: false
tf32: false
train_on_inputs: false
val_set_size: 0.05
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 1
weight_decay: 0.0
xformers_attention: null

outputs/lora-out

This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B on the tatsu-lab/alpaca dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1196

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
4.0326 0.0194 25 4.1196

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
28
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for varshithaj/Tinyllama8B

Adapter
(2)
this model

Dataset used to train varshithaj/Tinyllama8B