File size: 6,657 Bytes
d4cf5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
3f1b33c
d4cf5b3
3181279
 
 
 
3f1b33c
3181279
3f1b33c
3181279
d4cf5b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3181279
d4cf5b3
 
 
3f1b33c
 
3181279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4cf5b3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: other
tags:
- generated_from_trainer
model-index:
- name: segformer-b0-DeepCrack
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# segformer-b0-DeepCrack

This model is a fine-tuned version of [nvidia/mit-b4](https://huggingface.co/nvidia/mit-b4) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0017
- Mean Iou: 0.0
- Mean Accuracy: 0.0
- Overall Accuracy: 0.0
- Accuracy Background: nan
- Accuracy Cracked: 0.0
- Iou Background: 0.0
- Iou Cracked: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Cracked | Iou Background | Iou Cracked |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
| 0.2923        | 0.13  | 20   | 0.2120          | 0.0200   | 0.0399        | 0.0399           | nan                 | 0.0399           | 0.0            | 0.0399      |
| 0.0959        | 0.27  | 40   | 0.0702          | 0.0661   | 0.1321        | 0.1321           | nan                 | 0.1321           | 0.0            | 0.1321      |
| 0.0316        | 0.4   | 60   | 0.0378          | 0.0193   | 0.0387        | 0.0387           | nan                 | 0.0387           | 0.0            | 0.0387      |
| 0.0184        | 0.53  | 80   | 0.0165          | 0.0306   | 0.0612        | 0.0612           | nan                 | 0.0612           | 0.0            | 0.0612      |
| 0.0119        | 0.67  | 100  | 0.0108          | 0.0277   | 0.0554        | 0.0554           | nan                 | 0.0554           | 0.0            | 0.0554      |
| 0.0083        | 0.8   | 120  | 0.0085          | 0.0381   | 0.0761        | 0.0761           | nan                 | 0.0761           | 0.0            | 0.0761      |
| 0.0085        | 0.93  | 140  | 0.0118          | 0.0112   | 0.0223        | 0.0223           | nan                 | 0.0223           | 0.0            | 0.0223      |
| 0.0072        | 1.07  | 160  | 0.0063          | 0.0289   | 0.0578        | 0.0578           | nan                 | 0.0578           | 0.0            | 0.0578      |
| 0.0072        | 1.2   | 180  | 0.0057          | 0.0004   | 0.0009        | 0.0009           | nan                 | 0.0009           | 0.0            | 0.0009      |
| 0.0038        | 1.33  | 200  | 0.0037          | 0.0004   | 0.0009        | 0.0009           | nan                 | 0.0009           | 0.0            | 0.0009      |
| 0.0038        | 1.47  | 220  | 0.0035          | 0.0024   | 0.0048        | 0.0048           | nan                 | 0.0048           | 0.0            | 0.0048      |
| 0.0037        | 1.6   | 240  | 0.0033          | 0.0035   | 0.0071        | 0.0071           | nan                 | 0.0071           | 0.0            | 0.0071      |
| 0.004         | 1.73  | 260  | 0.0029          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000           | 0.0            | 0.0000      |
| 0.0027        | 1.87  | 280  | 0.0027          | 0.0      | 0.0           | 0.0              | nan                 | 0.0              | 0.0            | 0.0         |
| 0.0029        | 2.0   | 300  | 0.0025          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000           | 0.0            | 0.0000      |
| 0.0032        | 2.13  | 320  | 0.0026          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000           | 0.0            | 0.0000      |
| 0.0024        | 2.27  | 340  | 0.0023          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000           | 0.0            | 0.0000      |
| 0.0021        | 2.4   | 360  | 0.0024          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000           | 0.0            | 0.0000      |
| 0.0021        | 2.53  | 380  | 0.0021          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000           | 0.0            | 0.0000      |
| 0.0026        | 2.67  | 400  | 0.0020          | 0.0000   | 0.0001        | 0.0001           | nan                 | 0.0001           | 0.0            | 0.0001      |
| 0.002         | 2.8   | 420  | 0.0018          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000           | 0.0            | 0.0000      |
| 0.0019        | 2.93  | 440  | 0.0020          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000           | 0.0            | 0.0000      |
| 0.0023        | 3.07  | 460  | 0.0020          | 0.0      | 0.0           | 0.0              | nan                 | 0.0              | 0.0            | 0.0         |
| 0.002         | 3.2   | 480  | 0.0019          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000           | 0.0            | 0.0000      |
| 0.0018        | 3.33  | 500  | 0.0019          | 0.0000   | 0.0001        | 0.0001           | nan                 | 0.0001           | 0.0            | 0.0001      |
| 0.0018        | 3.47  | 520  | 0.0018          | 0.0000   | 0.0001        | 0.0001           | nan                 | 0.0001           | 0.0            | 0.0001      |
| 0.0021        | 3.6   | 540  | 0.0017          | 0.0000   | 0.0000        | 0.0000           | nan                 | 0.0000           | 0.0            | 0.0000      |
| 0.0018        | 3.73  | 560  | 0.0017          | 0.0      | 0.0           | 0.0              | nan                 | 0.0              | 0.0            | 0.0         |
| 0.0017        | 3.87  | 580  | 0.0016          | 0.0      | 0.0           | 0.0              | nan                 | 0.0              | 0.0            | 0.0         |
| 0.002         | 4.0   | 600  | 0.0017          | 0.0      | 0.0           | 0.0              | nan                 | 0.0              | 0.0            | 0.0         |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3