varcoder commited on
Commit
3181279
·
1 Parent(s): 107e3da

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -8
README.md CHANGED
@@ -14,14 +14,14 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [nvidia/mit-b4](https://huggingface.co/nvidia/mit-b4) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.4264
18
- - Mean Iou: 0.1964
19
- - Mean Accuracy: 0.3929
20
- - Overall Accuracy: 0.3929
21
  - Accuracy Background: nan
22
- - Accuracy Cracked: 0.3929
23
  - Iou Background: 0.0
24
- - Iou Cracked: 0.3929
25
 
26
  ## Model description
27
 
@@ -46,13 +46,42 @@ The following hyperparameters were used during training:
46
  - seed: 42
47
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
  - lr_scheduler_type: linear
49
- - num_epochs: 1
50
 
51
  ### Training results
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Cracked | Iou Background | Iou Cracked |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
55
- | 0.5096 | 1.0 | 20 | 0.4264 | 0.1964 | 0.3929 | 0.3929 | nan | 0.3929 | 0.0 | 0.3929 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
 
58
  ### Framework versions
 
14
 
15
  This model is a fine-tuned version of [nvidia/mit-b4](https://huggingface.co/nvidia/mit-b4) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.0017
18
+ - Mean Iou: 0.0
19
+ - Mean Accuracy: 0.0
20
+ - Overall Accuracy: 0.0
21
  - Accuracy Background: nan
22
+ - Accuracy Cracked: 0.0
23
  - Iou Background: 0.0
24
+ - Iou Cracked: 0.0
25
 
26
  ## Model description
27
 
 
46
  - seed: 42
47
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
  - lr_scheduler_type: linear
49
+ - num_epochs: 4
50
 
51
  ### Training results
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Cracked | Iou Background | Iou Cracked |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
55
+ | 0.2923 | 0.13 | 20 | 0.2120 | 0.0200 | 0.0399 | 0.0399 | nan | 0.0399 | 0.0 | 0.0399 |
56
+ | 0.0959 | 0.27 | 40 | 0.0702 | 0.0661 | 0.1321 | 0.1321 | nan | 0.1321 | 0.0 | 0.1321 |
57
+ | 0.0316 | 0.4 | 60 | 0.0378 | 0.0193 | 0.0387 | 0.0387 | nan | 0.0387 | 0.0 | 0.0387 |
58
+ | 0.0184 | 0.53 | 80 | 0.0165 | 0.0306 | 0.0612 | 0.0612 | nan | 0.0612 | 0.0 | 0.0612 |
59
+ | 0.0119 | 0.67 | 100 | 0.0108 | 0.0277 | 0.0554 | 0.0554 | nan | 0.0554 | 0.0 | 0.0554 |
60
+ | 0.0083 | 0.8 | 120 | 0.0085 | 0.0381 | 0.0761 | 0.0761 | nan | 0.0761 | 0.0 | 0.0761 |
61
+ | 0.0085 | 0.93 | 140 | 0.0118 | 0.0112 | 0.0223 | 0.0223 | nan | 0.0223 | 0.0 | 0.0223 |
62
+ | 0.0072 | 1.07 | 160 | 0.0063 | 0.0289 | 0.0578 | 0.0578 | nan | 0.0578 | 0.0 | 0.0578 |
63
+ | 0.0072 | 1.2 | 180 | 0.0057 | 0.0004 | 0.0009 | 0.0009 | nan | 0.0009 | 0.0 | 0.0009 |
64
+ | 0.0038 | 1.33 | 200 | 0.0037 | 0.0004 | 0.0009 | 0.0009 | nan | 0.0009 | 0.0 | 0.0009 |
65
+ | 0.0038 | 1.47 | 220 | 0.0035 | 0.0024 | 0.0048 | 0.0048 | nan | 0.0048 | 0.0 | 0.0048 |
66
+ | 0.0037 | 1.6 | 240 | 0.0033 | 0.0035 | 0.0071 | 0.0071 | nan | 0.0071 | 0.0 | 0.0071 |
67
+ | 0.004 | 1.73 | 260 | 0.0029 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
68
+ | 0.0027 | 1.87 | 280 | 0.0027 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
69
+ | 0.0029 | 2.0 | 300 | 0.0025 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
70
+ | 0.0032 | 2.13 | 320 | 0.0026 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
71
+ | 0.0024 | 2.27 | 340 | 0.0023 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
72
+ | 0.0021 | 2.4 | 360 | 0.0024 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
73
+ | 0.0021 | 2.53 | 380 | 0.0021 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
74
+ | 0.0026 | 2.67 | 400 | 0.0020 | 0.0000 | 0.0001 | 0.0001 | nan | 0.0001 | 0.0 | 0.0001 |
75
+ | 0.002 | 2.8 | 420 | 0.0018 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
76
+ | 0.0019 | 2.93 | 440 | 0.0020 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
77
+ | 0.0023 | 3.07 | 460 | 0.0020 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
78
+ | 0.002 | 3.2 | 480 | 0.0019 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
79
+ | 0.0018 | 3.33 | 500 | 0.0019 | 0.0000 | 0.0001 | 0.0001 | nan | 0.0001 | 0.0 | 0.0001 |
80
+ | 0.0018 | 3.47 | 520 | 0.0018 | 0.0000 | 0.0001 | 0.0001 | nan | 0.0001 | 0.0 | 0.0001 |
81
+ | 0.0021 | 3.6 | 540 | 0.0017 | 0.0000 | 0.0000 | 0.0000 | nan | 0.0000 | 0.0 | 0.0000 |
82
+ | 0.0018 | 3.73 | 560 | 0.0017 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
83
+ | 0.0017 | 3.87 | 580 | 0.0016 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
84
+ | 0.002 | 4.0 | 600 | 0.0017 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
85
 
86
 
87
  ### Framework versions