h-iida commited on
Commit
b629e33
·
verified ·
1 Parent(s): d6d2684

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -7
README.md CHANGED
@@ -20,18 +20,24 @@ For the MNTP Adapter, please refer to [this link](https://huggingface.co/uzabase
20
  - **License:** Apache2.0
21
  - **Finetuned from model:** [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf)
22
 
23
- ### Model Sources [optional]
24
 
25
  - **Repository:** https://github.com/McGill-NLP/llm2vec
26
  - **Paper:** https://arxiv.org/abs/2404.05961
27
 
28
- ## Usage
29
 
30
  - Please see [original LLM2Vec repo](https://huggingface.co/McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-unsup-simcse#usage)
31
 
32
- ## Training Details
 
 
33
 
34
- ### Training Data
 
 
 
 
35
 
36
  - Make Corpus from SimCSE from [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia)
37
  - Script for making SimCSE Corpus
@@ -74,7 +80,7 @@ if __name__ == "__main__":
74
 
75
 
76
 
77
- #### Training Hyperparameter
78
  - simcse_dropout: 0.3
79
  - bidirectional: true
80
  - pooling_mode: "mean"
@@ -92,7 +98,7 @@ if __name__ == "__main__":
92
  - gradient_checkpointing: true
93
 
94
 
95
- #### Accelerator Settings
96
  - deepspeed_config:
97
  - gradient_accumulation_steps: 1
98
  - gradient_clipping: 1.0
@@ -118,7 +124,7 @@ if __name__ == "__main__":
118
  - quse_cpu: false
119
 
120
 
121
- ### Framework versions
122
 
123
  - Python: 3.12.3
124
  - PEFT 0.11.1
 
20
  - **License:** Apache2.0
21
  - **Finetuned from model:** [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf)
22
 
23
+ ### Model Sources
24
 
25
  - **Repository:** https://github.com/McGill-NLP/llm2vec
26
  - **Paper:** https://arxiv.org/abs/2404.05961
27
 
28
+ # Usage
29
 
30
  - Please see [original LLM2Vec repo](https://huggingface.co/McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-unsup-simcse#usage)
31
 
32
+ # Benchmark
33
+ = Followings are summaries. Details are [here]()
34
+ ## MTEB(Japanese)
35
 
36
+ ## MTEB(English)
37
+
38
+ # Training Details
39
+
40
+ ## Training Data
41
 
42
  - Make Corpus from SimCSE from [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia)
43
  - Script for making SimCSE Corpus
 
80
 
81
 
82
 
83
+ ## Training Hyperparameter
84
  - simcse_dropout: 0.3
85
  - bidirectional: true
86
  - pooling_mode: "mean"
 
98
  - gradient_checkpointing: true
99
 
100
 
101
+ ## Accelerator Settings
102
  - deepspeed_config:
103
  - gradient_accumulation_steps: 1
104
  - gradient_clipping: 1.0
 
124
  - quse_cpu: false
125
 
126
 
127
+ ## Framework versions
128
 
129
  - Python: 3.12.3
130
  - PEFT 0.11.1