Update README.md
Browse files
README.md
CHANGED
|
@@ -3,11 +3,11 @@ base_model: tokyotech-llm/Swallow-7b-hf
|
|
| 3 |
library_name: peft
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
|
@@ -15,188 +15,117 @@ library_name: peft
|
|
| 15 |
|
| 16 |
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
- **
|
| 21 |
-
- **
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
### Model Sources [optional]
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
| 78 |
### Training Data
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
####
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
-
|
| 148 |
-
-
|
| 149 |
-
-
|
| 150 |
-
-
|
| 151 |
-
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
|
| 197 |
-
## Model Card Contact
|
| 198 |
|
| 199 |
-
[More Information Needed]
|
| 200 |
### Framework versions
|
| 201 |
|
| 202 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
library_name: peft
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# Model Info
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
This is a model that applies LLM2Vec to Swallow. Only the PEFT Adapter is distributed.
|
| 9 |
+
LLM2Vec is fine-tuned on two tasks: MNTP and SimCSE, and this repository contains the results of applying SimCSE after MNTP.
|
| 10 |
+
For the MNTP Adapter, please refer to [this link](https://huggingface.co/uzabase/LLM2Vec-Llama-2-7b-hf-wikipedia-jp-mntp).
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
|
|
|
| 15 |
|
| 16 |
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
|
| 18 |
+
- **Model type:** PEFT
|
| 19 |
+
- **Language(s) (NLP):** Japanese
|
| 20 |
+
- **License:** Apache2.0
|
| 21 |
+
- **Finetuned from model:** [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
### Model Sources [optional]
|
| 24 |
|
| 25 |
+
- **Repository:** https://github.com/McGill-NLP/llm2vec
|
| 26 |
+
- **Paper:** https://arxiv.org/abs/2404.05961
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
## Usage
|
| 29 |
|
| 30 |
+
- Please see [original LLM2Vec repo](https://huggingface.co/McGill-NLP/LLM2Vec-Llama-2-7b-chat-hf-mntp-unsup-simcse#usage)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
## Training Details
|
| 33 |
|
| 34 |
### Training Data
|
| 35 |
|
| 36 |
+
- Make Corpus from SimCSE from [Wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia)
|
| 37 |
+
- Script for making SimCSE Corpus
|
| 38 |
+
```
|
| 39 |
+
import argparse
|
| 40 |
+
import random
|
| 41 |
+
import re
|
| 42 |
+
from pathlib import Path
|
| 43 |
+
from datasets import load_dataset
|
| 44 |
+
from tqdm import tqdm
|
| 45 |
+
|
| 46 |
+
def main(args):
|
| 47 |
+
random.seed(args.seed)
|
| 48 |
+
wiki_ds = load_dataset("wikimedia/wikipedia", "20231101.ja")
|
| 49 |
+
sampled_index = random.sample(range(len(wiki_ds["train"])), args.N)
|
| 50 |
+
sample_wiki = wiki_ds["train"][sampled_index]
|
| 51 |
+
output_texts = []
|
| 52 |
+
for title, text in tqdm(zip(sample_wiki["title"], sample_wiki["text"])):
|
| 53 |
+
output_texts.append(title)
|
| 54 |
+
sentences = re.split("[\n。]", text)
|
| 55 |
+
for sentence in sentences:
|
| 56 |
+
if len(sentence) > args.min_sentence_len:
|
| 57 |
+
output_texts.append(sentence.strip()+"。")
|
| 58 |
+
with args.output_path.open(mode="w") as f:
|
| 59 |
+
for line in output_texts:
|
| 60 |
+
f.write(line)
|
| 61 |
+
f.write("\n")
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
if __name__ == "__main__":
|
| 65 |
+
parser = argparse.ArgumentParser()
|
| 66 |
+
parser.add_argument("--N", default=200000, type=int)
|
| 67 |
+
parser.add_argument("--seed", default=42, type=int)
|
| 68 |
+
parser.add_argument("-o", "--output_path", type=Path)
|
| 69 |
+
parser.add_argument("--min_sentence_len", default=50, type=int)
|
| 70 |
+
|
| 71 |
+
args = parser.parse_args()
|
| 72 |
+
main(args)
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
#### Training Hyperparameter
|
| 78 |
+
- simcse_dropout: 0.3
|
| 79 |
+
- bidirectional: true
|
| 80 |
+
- pooling_mode: "mean"
|
| 81 |
+
- remove_unused_columns: false
|
| 82 |
+
- learning_rate: 3e-5
|
| 83 |
+
- loss_scale: 20
|
| 84 |
+
- batch_size: 256
|
| 85 |
+
- gradient_accumulation_steps: 1
|
| 86 |
+
- max_seq_length: 128
|
| 87 |
+
- lora_r: 16
|
| 88 |
+
- torch_dtype: "bfloat16"
|
| 89 |
+
- attn_implementation: "flash_attention_2"
|
| 90 |
+
- seed: 42
|
| 91 |
+
- bf16: true
|
| 92 |
+
- gradient_checkpointing: true
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
#### Accelerator Settings
|
| 96 |
+
- deepspeed_config:
|
| 97 |
+
- gradient_accumulation_steps: 1
|
| 98 |
+
- gradient_clipping: 1.0
|
| 99 |
+
- offload_optimizer_device: nvme
|
| 100 |
+
- offload_optimizer_nvme_path: /nvme
|
| 101 |
+
- zero3_save_16bit_model: true
|
| 102 |
+
- zero_stage: 2
|
| 103 |
+
- distributed_type: DEEPSPEED
|
| 104 |
+
- downcast_bf16: 'no'
|
| 105 |
+
- dynamo_config:
|
| 106 |
+
- dynamo_backend: INDUCTOR
|
| 107 |
+
- dynamo_mode: default
|
| 108 |
+
- dynamo_use_dynamic: true
|
| 109 |
+
- dynamo_use_fullgraph: true
|
| 110 |
+
- enable_cpu_affinity: false
|
| 111 |
+
- machine_rank: 0
|
| 112 |
+
- main_training_function: main
|
| 113 |
+
- mixed_precision: bf16
|
| 114 |
+
- num_machines: 1
|
| 115 |
+
- num_processes: 2
|
| 116 |
+
- rdzv_backend: static
|
| 117 |
+
- same_network: true
|
| 118 |
+
- quse_cpu: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
|
|
|
| 120 |
|
|
|
|
| 121 |
### Framework versions
|
| 122 |
|
| 123 |
+
- Python: 3.12.3
|
| 124 |
+
- PEFT 0.11.1
|
| 125 |
+
- Sentence Transformers: 3.0.1
|
| 126 |
+
- Transformers: 4.41.0
|
| 127 |
+
- PyTorch: 2.3.0
|
| 128 |
+
- Accelerate: 0.30.1
|
| 129 |
+
- Datasets: 2.20.0
|
| 130 |
+
- Tokenizers: 0.19.1
|
| 131 |
+
- MTEB: 1.13.0
|