|
|
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
from datasets import Dataset |
|
|
|
device = "cuda" |
|
path = "Unbabel/mfineweb-edu-classifier" |
|
model = AutoModelForSequenceClassification.from_pretrained( |
|
path, |
|
device_map=device, |
|
trust_remote_code=True, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(path, use_fast=True) |
|
|
|
def tokenize(examples): |
|
return tokenizer(examples["text"], truncation=True, max_length=512) |
|
|
|
texts = [ |
|
"This is a text", |
|
"this is another text to classify" |
|
] |
|
|
|
model_inputs = [ |
|
tokenizer(text, truncation=True, max_length=512) for text in texts |
|
] |
|
|
|
with torch.no_grad(): |
|
for model_input in model_inputs: |
|
output = model(input_ids) |
|
``` |