Commit
·
2b584c3
1
Parent(s):
00b7823
update model card README.md
Browse files
README.md
CHANGED
|
@@ -7,6 +7,9 @@ datasets:
|
|
| 7 |
- imagefolder
|
| 8 |
metrics:
|
| 9 |
- accuracy
|
|
|
|
|
|
|
|
|
|
| 10 |
model-index:
|
| 11 |
- name: segformer-class-classWeights-augmentation
|
| 12 |
results:
|
|
@@ -22,7 +25,16 @@ model-index:
|
|
| 22 |
metrics:
|
| 23 |
- name: Accuracy
|
| 24 |
type: accuracy
|
| 25 |
-
value:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
---
|
| 27 |
|
| 28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -32,8 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 32 |
|
| 33 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
| 34 |
It achieves the following results on the evaluation set:
|
| 35 |
-
- Loss: 0.
|
| 36 |
-
- Accuracy:
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
## Model description
|
| 39 |
|
|
@@ -61,30 +76,21 @@ The following hyperparameters were used during training:
|
|
| 61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 62 |
- lr_scheduler_type: linear
|
| 63 |
- lr_scheduler_warmup_ratio: 0.1
|
| 64 |
-
- num_epochs:
|
| 65 |
|
| 66 |
### Training results
|
| 67 |
|
| 68 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 69 |
-
|
| 70 |
-
| No log | 0.89 | 6 | 0.
|
| 71 |
-
|
|
| 72 |
-
| 0.
|
| 73 |
-
| 0.
|
| 74 |
-
| 0.
|
| 75 |
-
| 0.
|
| 76 |
-
| 0.
|
| 77 |
-
| 0.
|
| 78 |
-
| 0.
|
| 79 |
-
| 0.1772 | 9.93 | 67 | 0.0114 | 1.0 |
|
| 80 |
-
| 0.1016 | 10.96 | 74 | 0.0039 | 1.0 |
|
| 81 |
-
| 0.1534 | 12.0 | 81 | 0.0038 | 1.0 |
|
| 82 |
-
| 0.1534 | 12.89 | 87 | 0.0187 | 0.9655 |
|
| 83 |
-
| 0.1256 | 13.93 | 94 | 0.0023 | 1.0 |
|
| 84 |
-
| 0.1234 | 14.96 | 101 | 0.0016 | 1.0 |
|
| 85 |
-
| 0.1234 | 16.0 | 108 | 0.0019 | 1.0 |
|
| 86 |
-
| 0.1129 | 16.89 | 114 | 0.0018 | 1.0 |
|
| 87 |
-
| 0.17 | 17.78 | 120 | 0.0018 | 1.0 |
|
| 88 |
|
| 89 |
|
| 90 |
### Framework versions
|
|
|
|
| 7 |
- imagefolder
|
| 8 |
metrics:
|
| 9 |
- accuracy
|
| 10 |
+
- f1
|
| 11 |
+
- precision
|
| 12 |
+
- recall
|
| 13 |
model-index:
|
| 14 |
- name: segformer-class-classWeights-augmentation
|
| 15 |
results:
|
|
|
|
| 25 |
metrics:
|
| 26 |
- name: Accuracy
|
| 27 |
type: accuracy
|
| 28 |
+
value: 0.9655172413793104
|
| 29 |
+
- name: F1
|
| 30 |
+
type: f1
|
| 31 |
+
value: 0.964683592269799
|
| 32 |
+
- name: Precision
|
| 33 |
+
type: precision
|
| 34 |
+
value: 0.9674329501915708
|
| 35 |
+
- name: Recall
|
| 36 |
+
type: recall
|
| 37 |
+
value: 0.9655172413793104
|
| 38 |
---
|
| 39 |
|
| 40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 44 |
|
| 45 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
| 46 |
It achieves the following results on the evaluation set:
|
| 47 |
+
- Loss: 0.1453
|
| 48 |
+
- Accuracy: 0.9655
|
| 49 |
+
- F1: 0.9647
|
| 50 |
+
- Precision: 0.9674
|
| 51 |
+
- Recall: 0.9655
|
| 52 |
|
| 53 |
## Model description
|
| 54 |
|
|
|
|
| 76 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 77 |
- lr_scheduler_type: linear
|
| 78 |
- lr_scheduler_warmup_ratio: 0.1
|
| 79 |
+
- num_epochs: 10
|
| 80 |
|
| 81 |
### Training results
|
| 82 |
|
| 83 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
| 84 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 85 |
+
| No log | 0.89 | 6 | 0.0454 | 1.0 | 1.0 | 1.0 | 1.0 |
|
| 86 |
+
| 0.1558 | 1.93 | 13 | 0.0816 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
| 87 |
+
| 0.1727 | 2.96 | 20 | 0.0775 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
| 88 |
+
| 0.1727 | 4.0 | 27 | 0.0443 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
| 89 |
+
| 0.1299 | 4.89 | 33 | 0.0535 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
| 90 |
+
| 0.1808 | 5.93 | 40 | 0.0298 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
| 91 |
+
| 0.1808 | 6.96 | 47 | 0.0195 | 1.0 | 1.0 | 1.0 | 1.0 |
|
| 92 |
+
| 0.1406 | 8.0 | 54 | 0.0526 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
| 93 |
+
| 0.1193 | 8.89 | 60 | 0.1453 | 0.9655 | 0.9647 | 0.9674 | 0.9655 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
|
| 96 |
### Framework versions
|