segformer-class-classWeights-augmentation
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1855
- Accuracy: 0.9655
- F1: 0.9647
- Precision: 0.9674
- Recall: 0.9655
- Learning Rate: 0.0000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Rate |
---|---|---|---|---|---|---|---|---|
No log | 0.89 | 6 | 0.1113 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
0.1153 | 1.93 | 13 | 0.0929 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
0.2246 | 2.96 | 20 | 0.1026 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
0.2246 | 4.0 | 27 | 0.0391 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
0.1433 | 4.89 | 33 | 0.0673 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
0.1816 | 5.93 | 40 | 0.0794 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
0.1816 | 6.96 | 47 | 0.0687 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
0.1448 | 8.0 | 54 | 0.1123 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
0.1124 | 8.89 | 60 | 0.1855 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 23
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for usamaaleem99tech/segformer-class-classWeights-augmentation
Base model
microsoft/swin-tiny-patch4-window7-224Evaluation results
- Accuracy on imagefolderself-reported0.966
- F1 on imagefolderself-reported0.965
- Precision on imagefolderself-reported0.967
- Recall on imagefolderself-reported0.966