cer_model-i
This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5760
- Precision: 0.6022
- Recall: 0.6740
- F1: 0.6361
- Accuracy: 0.7627
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-07
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.5369 | 1.0 | 4841 | 0.5760 | 0.6022 | 0.6740 | 0.6361 | 0.7627 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for urbija/cer_model-i
Base model
dmis-lab/biobert-base-cased-v1.1