uisikdag/hardhat Dataset:
Link

How to use

pip install -U yolov5
  • Load model and perform prediction:
import yolov5

# load model
model = yolov5.load('uisikdag/hardhat')
  
# set model parameters
model.conf = 0.25  # NMS confidence threshold
model.iou = 0.45  # NMS IoU threshold
model.agnostic = False  # NMS class-agnostic
model.multi_label = False  # NMS multiple labels per box
model.max_det = 1000  # maximum number of detections per image

# set image
img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model(img, size=640)

# inference with test time augmentation
results = model(img, augment=True)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()

# save results into "results/" folder
results.save(save_dir='results/')
  • Finetune the model on your custom dataset:
yolov5 train --data data.yaml --img 640 --batch 16 --weights uisikdag/hardhat --epochs 10

More models available at: awesome-yolov5-models

Downloads last month
19
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model authors have turned it off explicitly.