Usage (HuggingFace Transformers)
Without ChineseErrorCorrector, you can use the model like this:
First, you pass your input through the transformer model, then you get the generated sentence.
Install package:
pip install transformers autoawq
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "twnlp/ChineseErrorCorrector2-7B-AWQ"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "你是一个文本纠错专家,纠正输入句子中的语法错误,并输出正确的句子,输入句子为:"
text_input = "少先队员因该为老人让坐。"
messages = [
{"role": "user", "content": prompt + text_input}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
output:
少先队员应该为老人让座。
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.