tt-dart's picture
update readme
d834d9d
import torch
from transformers import (AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
pipeline,
logging,
TrainerCallback)
device = "cuda" # the device to load the model onto
bnb_config = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_use_double_quant = False,
bnb_4bit_quant_type = 'nf4',
bnb_4bit_compute_dtype = getattr(torch, "float16")
)
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2",quantization_config=bnb_config,)
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
# model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])