import torch from transformers import (AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, pipeline, logging, TrainerCallback) device = "cuda" # the device to load the model onto bnb_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_use_double_quant = False, bnb_4bit_quant_type = 'nf4', bnb_4bit_compute_dtype = getattr(torch, "float16") ) model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2",quantization_config=bnb_config,) tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2") messages = [ {"role": "user", "content": "What is your favourite condiment?"}, {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}, {"role": "user", "content": "Do you have mayonnaise recipes?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) # model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0])