bert2bert-bert-large-uncased-cnn-dailymail-seed42
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.1583
- Rouge1: 0.4043
- Rouge2: 0.1814
- Rougel: 0.2702
- Rougelsum: 0.2701
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
3.9499 | 0.2229 | 2000 | 3.7188 | 0.2279 | 0.0392 | 0.1496 | 0.1496 |
3.598 | 0.4458 | 4000 | 3.4012 | 0.2563 | 0.0515 | 0.1651 | 0.1651 |
3.3752 | 0.6687 | 6000 | 3.1921 | 0.2782 | 0.0632 | 0.1775 | 0.1775 |
3.1607 | 0.8916 | 8000 | 2.9519 | 0.3107 | 0.0899 | 0.1960 | 0.1960 |
2.7731 | 1.1145 | 10000 | 2.6712 | 0.3493 | 0.1224 | 0.2211 | 0.2211 |
2.5851 | 1.3374 | 12000 | 2.4760 | 0.3729 | 0.1480 | 0.2383 | 0.2383 |
2.4664 | 1.5603 | 14000 | 2.3676 | 0.3874 | 0.1635 | 0.2533 | 0.2532 |
2.4084 | 1.7832 | 16000 | 2.2857 | 0.3913 | 0.1689 | 0.2594 | 0.2593 |
2.3307 | 2.0061 | 18000 | 2.2461 | 0.3939 | 0.1712 | 0.2611 | 0.2611 |
2.1624 | 2.2290 | 20000 | 2.2275 | 0.3971 | 0.1739 | 0.2628 | 0.2627 |
2.1326 | 2.4519 | 22000 | 2.2021 | 0.4020 | 0.1793 | 0.2674 | 0.2673 |
2.1058 | 2.6748 | 24000 | 2.1742 | 0.4027 | 0.1798 | 0.2689 | 0.2689 |
2.1056 | 2.8977 | 26000 | 2.1583 | 0.4043 | 0.1814 | 0.2702 | 0.2701 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support