huginn-0125 / raven_modeling_minimal.py
JonasGeiping's picture
Update raven_modeling_minimal.py
94dcd7c verified
"""Minimal modeling.py file for HF compatibility and funny zero-shot experiments. Best used for inference, finetuning should work, but is untested with this implementation."""
import torch
import math
from torch import Tensor
from dataclasses import dataclass
from typing import Optional, Union, Any
from .raven_config_minimal import RavenConfig
from transformers.cache_utils import Cache, DynamicCache
###################### Huggingface Glue code I ##################################################################
from transformers import PreTrainedModel, GenerationMixin
from transformers.utils import ModelOutput
from transformers.generation.utils import GenerateDecoderOnlyOutput
import torch.nn.functional as F
from transformers import GenerationConfig
class RavenPreTrainedModel(PreTrainedModel):
config_class = RavenConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["SandwichBlock"]
_skip_keys_device_placement = ["past_key_values"]
_tied_weights_keys = ["lm_head.weight"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = False
_supports_static_cache = False
def _init_weights(self, module):
if not torch.rand((1,)).is_meta:
print("Random Initialization not implemented.")
@dataclass
class CausalLMOutputRecurrentLatents(ModelOutput):
loss: Optional[torch.Tensor] = None
log_ppl: Optional[torch.Tensor] = None
logits: Optional[torch.Tensor] = None
past_key_values: Optional[Cache] = None
latent_states: Optional[torch.Tensor] = None
hidden_states: Optional[torch.Tensor] = None
attention_maps: Optional[dict[int, torch.Tensor]] = None
stats: Optional[dict] = None
###################### Minimal implementation from here ############################################################
class RMSNorm(torch.nn.Module):
"""Saner dtype handling and slightly better for fusion"""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
with torch.autocast(enabled=False, device_type=x.device.type if x.device.type != "meta" else "cuda"):
return self._norm(x.float()).type_as(x) * self.weight
def reset_parameters(self) -> None:
torch.nn.init.ones_(self.weight)
class HuginnDynamicCache(DynamicCache):
def __init__(self, lookup_strategy: str = "full") -> None:
super().__init__()
self._seen_tokens = 0
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
self.value_cache: dict[int, dict[int, torch.Tensor]] = {}
# structure: cache[index_of_layer_or_recurrent_step][index_in_sequence]
# the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
# per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
# Also, It is critical that the head indices do not overlap with the recurrent iteration indices
self.lookup_strategy = lookup_strategy
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
step_idx: int,
lookup_strategy: Optional[str] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
if "compress-" in self.lookup_strategy and step_idx > 1: # hardcode for current model!
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
if "compress-s" in self.lookup_strategy:
new_step_idx = (step_idx - 2) % compression_stage + 2
else:
new_step_idx = (step_idx - 2) // compression_stage + 2
# @ print(step_idx, new_step_idx, compression_stage)
step_idx = new_step_idx
# Init
if step_idx not in self.key_cache:
self.key_cache[step_idx] = {}
self.value_cache[step_idx] = {}
# Update the number of seen tokens, we assume that step_idx=0 (first prelude) is always hit
if step_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Add entries to cache
for idx, entry in enumerate(key_states.unbind(dim=-2)):
if "compress-" not in self.lookup_strategy:
assert step_idx < 0 or self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
# print(f"Overwrote cache entry for step_idx {step_idx}") # likely the head
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
for idx, entry in enumerate(value_states.unbind(dim=-2)):
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
# Materialize past state based on lookup strategy:
if len(self.key_cache[step_idx]) == self._seen_tokens or self.lookup_strategy == "full":
# All entries are present, materialize cache as normal
return (
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
)
else: # some entries where not previously computed
# if lookup_strategy.startswith("latest"):
# latest_keys = []
# latest_values = []
# for token_pos in range(self._seen_tokens):
# # Find the latest step that has this token position
# max_step = max((s for s in range(step_idx + 1) if token_pos in self.key_cache[s]), default=None)
# if max_step is None:
# raise ValueError(f"No cache entry found for token position {token_pos}")
# latest_keys.append(self.key_cache[max_step][token_pos])
# latest_values.append(self.value_cache[max_step][token_pos])
# return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
if lookup_strategy.startswith("latest-m4"):
latest_keys = []
latest_values = []
for token_pos in range(self._seen_tokens):
# For steps >= 2, use modulo 4
if step_idx >= 2:
# Find valid steps for this token position
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
else:
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
if max_step is None:
raise ValueError(f"No cache entry found for token position {token_pos}")
latest_keys.append(self.key_cache[max_step][token_pos])
latest_values.append(self.value_cache[max_step][token_pos])
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
elif lookup_strategy.startswith("skip"):
existing_keys = []
existing_values = []
for token_pos in range(self._seen_tokens):
if token_pos in self.key_cache[step_idx]:
existing_keys.append(self.key_cache[step_idx][token_pos])
existing_values.append(self.value_cache[step_idx][token_pos])
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
elif lookup_strategy.startswith("randomized"): # sanity check
rand_keys = []
rand_values = []
for token_pos in range(self._seen_tokens):
if step_idx < 2: # For prelude steps
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
else: # Get all steps from same block position
curr_modulo = (step_idx - 2) % 4 + 2
valid_steps = [
s
for s in range(2, step_idx + 1)
if (s - 2) % 4 + 2 == curr_modulo and token_pos in self.key_cache[s]
]
max_step = valid_steps[torch.randint(len(valid_steps), (1,))]
rand_keys.append(self.key_cache[max_step][token_pos])
rand_values.append(self.value_cache[max_step][token_pos])
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
else:
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
def reset(self) -> None:
"""Reset the cache state."""
self._seen_tokens = 0
self.key_cache.clear()
self.value_cache.clear()
def get_seq_length(self, step_idx: int = 0) -> int:
return self._seen_tokens
def get_memory_usage(self) -> float:
total_bytes = 0
# For each recurrent step/layer index
for step_idx in self.key_cache:
# Get the sequence cache for this step
key_seq_cache = self.key_cache[step_idx]
for seq_idx in key_seq_cache:
key_tensor = key_seq_cache[seq_idx]
# Add memory for of key tensors, assuming value is the same
total_bytes += key_tensor.nelement() * key_tensor.element_size()
return total_bytes * 2 / (1024 * 1024)
class CausalSelfAttention(torch.nn.Module):
def __init__(self, config: RavenConfig) -> None:
super().__init__()
self.config = config
self.n_head = config.num_attention_heads
self.n_kv_heads = config.num_key_value_heads
self.head_dim = config.n_embd // self.n_head
shape = (self.n_head + 2 * self.n_kv_heads) * self.head_dim
self.chunks = [config.n_embd, self.n_kv_heads * self.head_dim, self.n_kv_heads * self.head_dim]
self.Wqkv = torch.nn.Linear(config.n_embd, shape, bias=False)
if config.qk_bias:
self.qk_bias = torch.nn.Parameter(torch.zeros(2, 1, self.n_head, self.head_dim))
self.proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=False)
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
step_idx: int,
mask: Optional[Tensor] = None,
past_key_values: Optional[Cache] = None,
return_attn: bool = False,
) -> tuple[Tensor, Optional[Tensor]]:
B, S, E = x.shape # batch size, sequence length, embedding dimensionality (n_embd)
q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
q = q.view(B, S, self.n_head, self.head_dim)
k = k.view(B, S, self.n_kv_heads, self.head_dim)
v = v.view(B, S, self.n_kv_heads, self.head_dim)
# bias?
if self.config.qk_bias:
q_bias, k_bias = self.qk_bias.split(1, dim=0)
q, k = (q + q_bias).to(q.dtype), (k + k_bias).to(q.dtype)
# apply rotary
q, k = apply_rotary_emb_complex_like(q, k, freqs_cis=freqs_cis)
q = q.transpose(1, 2) # (B, nh, S, hs)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
if past_key_values is not None:
k, v = past_key_values.update(k, v, step_idx)
if return_attn:
y, attention_map = self.compute_eager_sdpa(q, k, v, attn_mask=mask)
else:
y = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=q.shape[2] > 1
)
y = y.transpose(1, 2).reshape(B, S, E).contiguous() # reshape is a view if possible (it mostly is)
return self.proj(y), attention_map if return_attn else None
def compute_eager_sdpa(self, q, k, v, attn_mask):
scale = 1.0 / math.sqrt(self.head_dim)
scores = torch.matmul(q, k.transpose(-2, -1)) * scale
if attn_mask is not None:
scores = scores + attn_mask
if q.shape[2] > 1:
causal_mask = torch.triu(torch.ones(q.shape[2], q.shape[2]), diagonal=1).bool()
scores.masked_fill_(causal_mask.to(scores.device), float("-inf"))
attention_weights = torch.nn.functional.softmax(scores, dim=-1)
y = torch.matmul(attention_weights, v)
return y, attention_weights.max(dim=1)[0]
class GatedMLP(torch.nn.Module):
def __init__(self, config: RavenConfig, in_features: int = 0) -> None:
super().__init__()
in_features = config.n_embd if in_features == 0 else in_features
self.fc = torch.nn.Linear(in_features, config.intermediate_size * 2, bias=False)
self.proj = torch.nn.Linear(config.intermediate_size, config.n_embd, bias=False)
self.nonlin = torch.nn.SiLU()
def forward(self, x: Tensor) -> Tensor:
# modified to single FC layer to improve parallelism
x_fc_1, x_fc_2 = self.fc(x).chunk(2, dim=-1)
x = self.nonlin(x_fc_1) * x_fc_2
return self.proj(x)
class SandwichBlock(torch.nn.Module):
expanded = False
def __init__(self, config: RavenConfig, layer_id: int) -> None:
super().__init__()
self.norm_1 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.attn = CausalSelfAttention(config)
self.norm_2 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.mlp = GatedMLP(config)
self.norm_3 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.norm_4 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.layer_id = layer_id
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
step_idx: int,
mask: Optional[Tensor] = None,
past_key_values: Optional[Cache] = None,
return_attn: bool = False,
) -> tuple[Tensor, Optional[Tensor]]:
attn_out, attn_map = self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values, return_attn)
x = self.norm_2(attn_out + x)
x = self.norm_4(self.mlp(self.norm_3(x)) + x)
return x, attn_map
class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
def __init__(
self,
config: RavenConfig,
) -> None:
super().__init__(config)
self.config = config
# Transformer layers
prelude = torch.nn.ModuleList(SandwichBlock(config, layer_id=i) for i in range(config.n_layers_in_prelude))
adapter = torch.nn.Linear(config.n_embd * 2, config.n_embd, bias=config.bias)
core_block = torch.nn.ModuleList(
SandwichBlock(config, layer_id=i + config.n_layers_in_prelude)
for i in range(config.n_layers_in_recurrent_block)
)
o = config.n_layers_in_prelude + config.n_layers_in_recurrent_block * config.mean_recurrence
coda = torch.nn.ModuleList(SandwichBlock(config, layer_id=i + o) for i in range(config.n_layers_in_coda))
self.transformer = torch.nn.ModuleDict(
dict(
wte=torch.nn.Embedding(config.padded_vocab_size, config.n_embd),
prelude=prelude,
adapter=adapter,
core_block=core_block,
coda=coda,
ln_f=RMSNorm(config.n_embd, eps=config.norm_eps), # used twice :>
)
)
self.emb_scale = config.init_values["embed_scale"]
# Head
self.lm_head = torch.nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
if self.config.tie_embeddings:
self.tie_weights()
# rope
self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)
def get_input_embeddings(self):
return self.transformer.wte
def get_output_embeddings(self):
return self.lm_head
def _precompute_freqs_cis(self):
# can actually be a buffer now, and remains in fp32! (at least in the settings I tested)
freqs_cis = precompute_freqs_cis(
self.config.n_embd // self.config.num_attention_heads, self.config.block_size, self.config.rope_base, 1
)
return freqs_cis
def forward(
self,
input_ids: torch.Tensor,
input_embeds: Optional[torch.Tensor] = None,
input_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
num_steps: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
output_details: dict = {
"return_logits": True,
"return_latents": True,
"return_attention": False,
"return_head": False,
"return_stats": False,
},
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
**kwargs,
) -> CausalLMOutputRecurrentLatents:
# Support multiple position formats:
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
if input_embeds is None:
input_embeds = self.transformer.wte(input_ids)
if self.emb_scale != 1:
input_embeds = input_embeds * self.emb_scale # type: ignore
if use_cache and past_key_values is None:
past_key_values = HuginnDynamicCache()
attn_maps = {}
return_attn = output_details["return_attention"]
# Non-recurrent prelude
for block_idx, block in enumerate(self.transformer.prelude):
input_embeds, attn_map = block(
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn=return_attn
)
attn_maps[block_idx] = attn_map
# Main recurrence
x, num_steps_no_grad, num_steps_with_grad, xk, block_idx, attn_maps = self.iterate_forward(
input_embeds, # type: ignore
input_states,
freqs_cis,
block_idx,
attention_mask,
past_key_values,
num_steps,
attn_maps,
return_attn=return_attn,
)
latent_states = x.clone().detach()
# Coda layers
for block_idx, block in enumerate(self.transformer.coda, start=1):
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values, return_attn=return_attn)
attn_maps[-block_idx] = attn_map
x = self.transformer.ln_f(x)
# Prediction head, assuming labels really are labels and not equal to input_ids
if labels is not None:
logits = self.lm_head(x).float()
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
log_ppl = loss.clone().detach().exp()
else:
logits = self.lm_head(x).float()
loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)
return CausalLMOutputRecurrentLatents(
loss=loss,
log_ppl=log_ppl,
logits=logits if output_details["return_logits"] else None,
past_key_values=past_key_values,
hidden_states=x if output_details["return_head"] else None,
latent_states=latent_states if output_details["return_latents"] else None,
attention_maps=attn_maps if output_details["return_attention"] else None, # type: ignore
stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
if output_details["return_stats"]
else None,
)
@torch._dynamo.disable(recursive=False) # type: ignore
def iterate_forward(
self,
input_embeds,
input_states,
freqs_cis,
block_idx,
mask,
past_key_values: Optional[Cache] = None,
num_steps: Optional[torch.Tensor] = None,
attn_maps: dict = {},
return_attn: bool = False,
):
x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()
if num_steps is None:
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
num_steps_no_grad, num_steps_with_grad = num_steps
else:
num_steps_no_grad, num_steps_with_grad = num_steps, torch.tensor(0) if not x.is_meta else 0
with torch.no_grad():
# ultra annoying in ddp due to
# https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
# for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
# and all parameters are always used
for step in range(num_steps_no_grad):
xk = x
x, block_idx, attn_maps = self.core_block_forward(
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps, return_attn
)
for step in range(num_steps_with_grad):
xk = x
x, block_idx, attn_maps = self.core_block_forward(
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps, return_attn
)
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx, attn_maps
def core_block_forward(
self,
x,
input_embeds,
freqs_cis,
mask,
past_key_values,
block_idx: Union[torch.Tensor, int],
attn_maps: dict = {},
return_attn: bool = False,
):
x = self.transformer.adapter(torch.cat([x, input_embeds.to(x.device)], dim=-1))
for idx, block in enumerate(self.transformer.core_block, start=1):
x, attn_map = block(x, freqs_cis, block_idx + idx, mask, past_key_values, return_attn=return_attn)
attn_maps[block_idx + idx] = attn_map
return x, block_idx + idx, attn_maps
@torch.no_grad()
def iterate_one_step(
self,
input_embeds,
input_states,
position_ids: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
block_idx: Union[torch.Tensor, int] = 0,
attention_mask: Optional[Tensor] = None,
past_key_values: Optional[Cache] = None,
attn_maps: dict = {},
):
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : input_embeds.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
x, block_idx, attn_maps = self.core_block_forward(
input_states, input_embeds, freqs_cis, attention_mask, past_key_values, block_idx, attn_maps
)
return x, block_idx, attn_maps
def predict_from_latents(
self,
latents,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
return_attn: bool = False,
attn_maps: dict = {},
):
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : latents.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
x = self.transformer.ln_f(latents)
# Coda layers
for block_idx, block in enumerate(self.transformer.coda, start=1):
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values)
attn_maps[block_idx] = attn_map
x = self.transformer.ln_f(x)
logits = self.lm_head(x).float()
return CausalLMOutputRecurrentLatents(
loss=torch.as_tensor(0.0),
log_ppl=torch.as_tensor(0.0),
logits=logits,
past_key_values=past_key_values,
attention_maps=attn_maps if len(attn_maps) > 0 else None,
)
def embed_inputs(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
return_attn: bool = False,
**kwargs,
) -> tuple[torch.Tensor, int, dict[int, Tensor]]:
# Support multiple position formats:
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
input_embeds = self.transformer.wte(input_ids)
if self.emb_scale != 1:
input_embeds = input_embeds * self.emb_scale # type: ignore
if use_cache and past_key_values is None:
past_key_values = HuginnDynamicCache()
# Non-recurrent prelude
attn_maps = {}
for block_idx, block in enumerate(self.transformer.prelude):
input_embeds, attn_maps = block(
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn
)
return input_embeds, block_idx, attn_maps
@torch._dynamo.disable(recursive=False) # type: ignore
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
"""Outputs are long tensors so that they can be passed through compiled functions"""
t = max(self.config.mean_recurrence - self.config.mean_backprop_depth, 0)
s = self.config.mean_backprop_depth
if torch.rand((1,)).is_meta: # annoying clause to make meta-tensor-based flop counting work
# these values are only the mean TFLOPs of the randomized sampler
# Note that this clause also breaks the contract, and returns ints in meta tensor mode
return t, s # type: ignore
if self.training:
sigma = 0.5
mu = math.log(t + s) - (sigma**2 / 2)
rate = torch.zeros((1,)).log_normal_(mean=mu, std=sigma)
p = torch.poisson(torch.tensor([rate], dtype=torch.float)) + 1
n = torch.clamp(p - s, min=0)
k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
else:
n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)
return n.to(dtype=torch.long), k.to(dtype=torch.long)
def initialize_state(self, input_embeds, deterministic: bool = False):
x = torch.randn_like(input_embeds)
std = self.config.init_values["std"]
torch.nn.init.trunc_normal_(x, mean=0.0, std=std, a=-3 * std, b=3 * std)
if self.emb_scale != 1:
x = x * self.emb_scale
return x if not deterministic else x.zero_()
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
):
model_inputs = {}
model_inputs["cache_position"] = cache_position
current_input_length = input_ids.shape[1]
if past_key_values is not None:
if type(past_key_values) != HuginnDynamicCache:
# Need to use custom cache, detect and replace HF dynamic cache if generate injects it
assert past_key_values.get_seq_length() == 0
past_key_values = HuginnDynamicCache()
model_inputs["past_key_values"] = past_key_values if kwargs["use_cache"] else None
input_ids = input_ids[:, cache_position] # type: ignore
model_inputs["input_ids"] = input_ids.clone(memory_format=torch.contiguous_format)
if cache_position is None:
position_ids = torch.arange(current_input_length)[None, :].to(input_ids.device)
model_inputs["position_ids"] = position_ids[:, -current_input_length:].clone(
memory_format=torch.contiguous_format
) # some form of position_ids is a critical argument for the model to correctly apply rope!
# forward all other entries
for key, value in kwargs.items():
if key not in model_inputs:
model_inputs[key] = value
return model_inputs
@torch.no_grad()
def generate(self, *args, **kwargs):
"""Dispatcher - use HF generate in all normal cases.
If BOTH `criterion` AND `exit_threshold` are provided as not None, we use adaptive compute.
"""
if kwargs.get("criterion", None) is not None and kwargs.get("exit_threshold", None) is not None:
print("Dispatching to custom generate function call")
return self.generate_with_adaptive_compute(*args, **kwargs)
else:
return super().generate(*args, **kwargs)
@torch.no_grad()
def generate_minimal(
self,
input_ids: torch.LongTensor,
generation_config: Optional[GenerationConfig] = None, # type: ignore
tokenizer=None,
streamer=None,
continuous_compute=False, # warm-start state / continuous CoT
cache_kwargs: dict = {},
**model_kwargs,
) -> Union[torch.Tensor, dict[str, Any]]:
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
# Setup
if generation_config is None:
generation_config: GenerationConfig = self.generation_config # type: ignore
model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
model_kwargs["use_cache"] = True
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
if continuous_compute:
embedded_inputs, _, _ = self.embed_inputs(input_ids)
model_kwargs["input_states"] = self.initialize_state(embedded_inputs)
# Generate tokens
for _ in range(generation_config.max_length - input_ids.shape[1]):
# Forward pass
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
outputs = self(**model_inputs)
next_token_logits = outputs.logits[0, -1, :]
if continuous_compute:
current_last_latent = outputs.latent_states[:, -1:, :]
# Sample or select next token
if generation_config.do_sample:
if generation_config.temperature:
next_token_logits = next_token_logits / generation_config.temperature
probs = F.softmax(next_token_logits, dim=-1)
# Apply top_k
if generation_config.top_k:
top_k_probs, _ = torch.topk(probs, generation_config.top_k)
probs[probs < top_k_probs[-1]] = 0
# Apply top_p
if generation_config.top_p:
sorted_probs = torch.sort(probs, descending=True)[0]
cumsum = torch.cumsum(sorted_probs, dim=-1)
probs[cumsum > generation_config.top_p] = 0
# Apply min_p
if generation_config.min_p:
probs[probs < generation_config.min_p * probs.max()] = 0
probs = probs / probs.sum()
next_token = torch.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
input_ids = torch.cat([input_ids, next_token[None, :]], dim=-1) # type: ignore
if streamer:
streamer.put(next_token.cpu())
# Update model kwargs
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
if continuous_compute:
model_kwargs["input_states"] = current_last_latent
# Check if we hit a stop token
if stop_tokens is not None and next_token in stop_tokens:
break
if streamer:
streamer.end()
if generation_config.return_dict_in_generate:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=None,
logits=None,
attentions=None,
hidden_states=None,
past_key_values=model_kwargs.get("past_key_values"),
)
return input_ids
@torch.no_grad()
def generate_with_adaptive_compute(
self,
input_ids: torch.LongTensor,
generation_config: Optional[GenerationConfig] = None, # type: ignore
tokenizer=None,
streamer=None,
continuous_compute=False, # warm-start state / continuous CoT
latent_dampening=False,
criterion="entropy-diff",
exit_threshold: Union[str, float, int] = "auto",
cache_kwargs: dict = {},
**model_kwargs,
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
"""
Generate tokens with adaptive compute. This is NOT the most efficient implementation.
For batches, on each token, we iterate until the entire batch finishes.
"""
# Setup
if generation_config is None:
generation_config: GenerationConfig = self.generation_config # type: ignore
model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
model_kwargs["use_cache"] = True
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
batch_size = input_ids.shape[0]
compute_steps = []
# Set up continuous compute if enabled
if continuous_compute:
embedded_inputs, _, _ = self.embed_inputs(input_ids)
current_last_latents = self.initialize_state(embedded_inputs)
# Track which sequences have finished
finished_sequences = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)
# Generate tokens
for step in range(generation_config.max_length - input_ids.shape[1]):
# Adaptive compute forward
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
aux_inputs = {
k: model_inputs[k] for k in ["cache_position", "past_key_values", "attention_mask"] if k in model_inputs
}
embedded_inputs, block_idx, _ = self.embed_inputs(model_inputs["input_ids"], **aux_inputs)
if not continuous_compute:
current_latents = self.initialize_state(embedded_inputs, deterministic=False)
else:
current_latents = current_last_latents
# Initialize criterion tracking for each sequence in batch
exit_values_per_seq = [[] for _ in range(batch_size)]
compute_steps_per_seq = [0] * batch_size
exit_reached = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)
# Set up criterions based on selected strategy
if criterion == "entropy-diff":
entropy = torch.ones(batch_size, device=input_ids.device) * 100.0
exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
elif criterion in ["latent-diff", "none"]:
exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
elif "kl" in criterion:
V = self.config.padded_vocab_size
log_probs = ((1 / V) * torch.ones(batch_size, V, device=input_ids.device)).log()
if criterion == "minp-kl":
exit_threshold = 1e-6 if exit_threshold == "auto" else float(exit_threshold)
else:
exit_threshold = 5e-4 if exit_threshold == "auto" else float(exit_threshold)
elif criterion == "argmax-stability":
stable_for_n_steps = torch.zeros(batch_size, dtype=torch.long, device=input_ids.device)
current_argmax = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) * -1
exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
else:
raise ValueError("Invalid adaptive compute strategy.")
all_latents = []
next_token_logits = None
# Iterate through compute steps
for compute_step in range(model_inputs["num_steps"]):
prev_latents = current_latents.clone()
current_latents, block_idx, _ = self.iterate_one_step(
embedded_inputs, current_latents, block_idx=block_idx, **aux_inputs
)
if latent_dampening:
all_latents.append(current_latents)
if step > 0: # do not exit in prefill:
# Check exit condition for each sequence in batch
if criterion == "entropy-diff":
prev_entropy = entropy
outputs = self.predict_from_latents(current_latents, **aux_inputs)
logits: torch.Tensor = outputs.logits # type: ignore
probs = F.softmax(logits[:, -1, :], dim=-1)
entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1)
exit_values = (entropy - prev_entropy).abs()
elif criterion == "latent-diff":
norm_diff = (prev_latents - current_latents).norm(dim=-1) / current_latents.norm(dim=-1)
exit_values = norm_diff.mean(dim=-1)
elif "kl" in criterion:
outputs = self.predict_from_latents(current_latents, **aux_inputs)
logits: torch.Tensor = outputs.logits # type: ignore
prev_log_probs = log_probs
if criterion == "minp-kl":
probs = F.softmax(logits[:, -1, :], dim=-1)
max_probs = probs.max(dim=-1, keepdim=True)[0]
probs_mask = probs < (0.1 * max_probs)
masked_probs = probs
masked_probs[probs_mask] = 1 / V
probs = masked_probs / masked_probs.sum(dim=-1, keepdim=True)
log_probs = probs.log()
else:
log_probs = F.log_softmax(logits[:, -1, :], dim=-1)
exit_values = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
elif criterion == "argmax-stability":
prev_argmax = current_argmax
outputs = self.predict_from_latents(current_latents, **aux_inputs)
logits: torch.Tensor = outputs.logits # type: ignore
current_argmax = logits[:, -1, :].argmax(dim=-1)
stable_for_n_steps = torch.where(
current_argmax == prev_argmax, stable_for_n_steps + 1, torch.zeros_like(stable_for_n_steps)
)
exit_values = stable_for_n_steps
# Record values and check exits for each sequence
for i in range(batch_size):
if not exit_reached[i] and not finished_sequences[i]:
exit_values_per_seq[i].append(exit_values[i].item())
new_exits = (
exit_values < exit_threshold
if criterion != "argmax-stability"
else exit_values >= exit_threshold
)
new_exits = new_exits & ~exit_reached & ~finished_sequences
if new_exits.any():
exit_reached = exit_reached | new_exits
if criterion == "latent-diff":
# Normally we don't compute the output for latent-diff, but when there is an exit,
# we need to compute and save the output
outputs = self.predict_from_latents(current_latents, **aux_inputs)
logits: torch.Tensor = outputs.logits # type: ignore
if next_token_logits is None:
next_token_logits = logits[:, -1, :].clone()
else:
next_token_logits = torch.where(
new_exits.unsqueeze(1).expand_as(logits[:, -1, :]), logits[:, -1, :], next_token_logits
)
for i in range(batch_size):
if new_exits[i]:
compute_steps_per_seq[i] = compute_step + 1
# If all sequences have exited, break early
if (exit_reached | finished_sequences).all():
break
# This else is if the for loop finished without breaking
else:
if not latent_dampening:
outputs = self.predict_from_latents(current_latents, **aux_inputs)
else:
dampened_latents = torch.sum(torch.cat(all_latents, dim=0), dim=0, keepdim=True)
outputs = self.predict_from_latents(dampened_latents, **aux_inputs)
# For sequences that didn't exit early, use the final logits
if next_token_logits is None:
next_token_logits = outputs.logits[:, -1, :] # type: ignore
else:
# Only update logits for sequences that didn't exit early
non_exit_mask = ~exit_reached & ~finished_sequences
next_token_logits = torch.where(
non_exit_mask.unsqueeze(1).expand_as(next_token_logits),
outputs.logits[:, -1, :], # type: ignore
next_token_logits,
)
# Record compute steps for non-exited sequences
for i in range(batch_size):
if non_exit_mask[i]:
compute_steps_per_seq[i] = model_inputs["num_steps"]
# Save latent states for continuous compute if enabled
if continuous_compute:
current_last_latents = current_latents[:, -1:, :]
# Record compute steps for this token generation
compute_steps.append([compute_steps_per_seq, exit_values_per_seq])
# Sample or select next token based on generation config
if generation_config.do_sample:
next_token = self._sample_next_token(
next_token_logits,
generation_config.temperature,
generation_config.top_k,
generation_config.top_p,
generation_config.min_p,
)
else:
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True) # type: ignore
input_ids = torch.cat([input_ids, next_token], dim=-1) # type: ignore
if streamer:
streamer.put(next_token.cpu())
# Update model kwargs
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
if continuous_compute:
model_kwargs["input_states"] = current_last_latents
# Check for finished sequences
for i in range(batch_size):
if not finished_sequences[i] and stop_tokens is not None and next_token[i, 0] in stop_tokens:
finished_sequences[i] = True
# Break if all sequences are finished
if finished_sequences.all():
break
if streamer:
streamer.end()
if generation_config.return_dict_in_generate:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=compute_steps, # type: ignore
logits=None,
attentions=None,
hidden_states=None,
past_key_values=model_kwargs.get("past_key_values"),
)
return input_ids
def _get_stops(self, generation_config, tokenizer):
stop_tokens = set()
if generation_config.eos_token_id is not None:
stop_tokens.add(generation_config.eos_token_id)
if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
for s in generation_config.stop_strings:
token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
stop_tokens.add(token_id)
return torch.tensor(list(stop_tokens))
def _sample_next_token(self, next_token_logits, temperature=None, top_k=None, top_p=None, min_p=None):
"""Helper function to sample the next token."""
if temperature:
next_token_logits = next_token_logits / temperature
probs = F.softmax(next_token_logits, dim=-1)
# Apply top_k
if top_k:
top_k_values, _ = torch.topk(probs, top_k, dim=-1)
min_values = top_k_values[:, -1].unsqueeze(-1).expand_as(probs)
probs = torch.where(probs < min_values, torch.zeros_like(probs), probs)
# Apply top_p (nucleus sampling)
if top_p:
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
# Create mask for probs to keep
remove_indices = cumulative_probs > top_p
remove_indices[:, 0] = False # Keep at least the top probability
# Convert sorted indices mask back to original indices mask
mask = torch.zeros_like(probs, dtype=torch.bool)
for i in range(probs.shape[0]):
mask[i, sorted_indices[i, remove_indices[i]]] = True
probs = torch.where(mask, torch.zeros_like(probs), probs)
# Apply min_p
if min_p:
max_probs = probs.max(dim=-1, keepdim=True)[0]
min_p_threshold = min_p * max_probs
probs = torch.where(probs < min_p_threshold, torch.zeros_like(probs), probs)
# Renormalize probabilities
probs = probs / probs.sum(dim=-1, keepdim=True).clamp(min=1e-10)
# Sample from the distribution
next_token = torch.multinomial(probs, num_samples=1)
return next_token
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
probs = torch.softmax(logits.float(), dim=-1)
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
residual_diff = (x - latent_states).norm(dim=-1)
rel_residual = residual_diff / latent_states.norm(dim=-1)
stats = {
"entropy": prob_entropy,
"residual_diff": residual_diff,
"rel_residual": rel_residual,
"num_steps_no_grad": num_steps_no_grad,
"num_steps_with_grad": num_steps_with_grad,
}
return stats
#################################### Utils #######################################################################
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, condense_ratio: int = 1):
with torch.autocast("cuda", enabled=False):
inv_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
t = torch.arange(end, dtype=torch.float32, device=inv_freqs.device) / condense_ratio
freqs = torch.outer(t, inv_freqs).float()
return torch.stack([torch.cos(freqs)[None, :, None, :], torch.sin(freqs)[None, :, None, :]], dim=4)
# equivalent to
# freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
# cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
def apply_rotary_emb_complex_like(q: Tensor, k: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
with torch.autocast("cuda", enabled=False):
qk_r2 = torch.cat([q, k], dim=2).unflatten(dim=-1, sizes=(-1, 2)).float() # cast to float32 for smooth skin
rotated_qk_r2 = torch.stack(
[
qk_r2[..., 0] * freqs_cis[..., 0] - qk_r2[..., 1] * freqs_cis[..., 1],
qk_r2[..., 1] * freqs_cis[..., 0] + qk_r2[..., 0] * freqs_cis[..., 1],
],
-1,
).flatten(3)
rotated_qk = rotated_qk_r2
return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2) # type: ignore
#################################### HF registration ############################################################
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
# New
RavenConfig.register_for_auto_class()
RavenForCausalLM.register_for_auto_class("AutoModel")
RavenForCausalLM.register_for_auto_class("AutoModelForCausalLM")
# Old?
AutoConfig.register("huginn_raven", RavenConfig)
AutoModel.register(RavenConfig, RavenForCausalLM)
AutoModelForCausalLM.register(RavenConfig, RavenForCausalLM)