File size: 50,519 Bytes
4fcf360
91ef220
 
 
 
 
 
6e44bc9
91ef220
 
 
 
 
d557f58
91ef220
6e44bc9
 
 
 
91ef220
 
dce2adb
91ef220
 
 
 
 
adef816
91ef220
 
 
 
 
 
 
ae9243e
 
91ef220
 
 
 
 
 
 
 
 
 
6e44bc9
91ef220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adef816
91ef220
 
 
 
 
 
 
6e44bc9
91ef220
 
 
 
 
 
 
 
6e44bc9
91ef220
 
 
 
 
 
6e44bc9
91ef220
6e44bc9
 
 
 
 
 
 
 
 
91ef220
 
 
 
 
 
 
 
 
6e44bc9
 
 
91ef220
 
 
 
 
6e44bc9
91ef220
 
 
 
 
 
6e44bc9
 
 
 
 
 
 
 
 
 
 
 
91ef220
 
 
6e44bc9
 
 
 
 
 
 
91ef220
 
 
 
 
6e44bc9
91ef220
 
 
 
 
 
 
6e44bc9
91ef220
 
 
6e44bc9
 
 
 
 
 
 
 
 
 
 
 
91ef220
 
 
 
 
 
 
 
 
 
 
 
 
6e44bc9
 
 
 
 
 
 
 
 
 
 
 
91ef220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e44bc9
 
91ef220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e44bc9
 
 
 
 
 
91ef220
6e44bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91ef220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e44bc9
 
 
 
91ef220
6e44bc9
91ef220
 
dce2adb
91ef220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adef816
91ef220
 
 
adef816
 
 
 
 
 
91ef220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc53cb
91ef220
 
 
 
 
 
dce2adb
91ef220
 
 
3af334f
 
6dc53cb
91ef220
 
 
fbd6377
6dc53cb
fbd6377
91ef220
 
 
 
 
 
 
 
 
6e44bc9
 
91ef220
 
 
6e44bc9
dce2adb
6e44bc9
 
91ef220
 
6e44bc9
91ef220
 
 
 
 
 
6dc53cb
6e44bc9
dce2adb
91ef220
 
 
 
 
dce2adb
6e44bc9
91ef220
 
 
 
 
 
94dcd7c
91ef220
 
 
 
 
 
 
 
 
 
 
6e44bc9
91ef220
 
 
 
 
 
 
 
 
 
 
 
 
 
6dc53cb
6e44bc9
dce2adb
91ef220
 
6dc53cb
91ef220
6dc53cb
 
91ef220
adef816
91ef220
 
 
 
 
 
 
 
6e44bc9
dce2adb
6e44bc9
91ef220
 
 
6e44bc9
dce2adb
6e44bc9
 
91ef220
 
6e44bc9
 
 
 
 
 
 
 
dce2adb
91ef220
88b2247
91ef220
dce2adb
6e44bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91ef220
 
 
 
 
 
adef816
 
 
 
91ef220
 
 
 
 
 
 
 
 
 
 
 
6dc53cb
91ef220
 
 
 
 
6dc53cb
91ef220
 
 
 
 
 
 
 
 
 
 
 
45a6c3d
91ef220
4fcf360
6dc53cb
 
 
 
91ef220
 
 
fbd6377
 
 
 
 
91ef220
 
 
 
 
 
 
dce2adb
 
adef816
 
 
 
dce2adb
 
 
e8fc157
dce2adb
6e44bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adef816
 
 
 
6e44bc9
 
 
 
 
 
 
adef816
 
 
 
6e44bc9
 
adef816
 
 
 
6e44bc9
 
 
 
 
 
 
 
 
 
 
 
adef816
 
 
 
 
 
6e44bc9
adef816
6e44bc9
adef816
6e44bc9
 
 
 
 
adef816
6e44bc9
 
 
 
 
adef816
 
6e44bc9
 
 
 
 
adef816
 
 
6e44bc9
 
 
 
 
adef816
 
 
 
6e44bc9
adef816
6e44bc9
adef816
6e44bc9
adef816
 
 
 
 
6e44bc9
adef816
 
 
 
6e44bc9
adef816
 
 
 
 
 
 
 
 
 
 
 
 
 
6e44bc9
adef816
6e44bc9
adef816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e44bc9
adef816
 
 
 
 
 
 
 
 
 
 
6e44bc9
 
 
 
 
 
 
adef816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e44bc9
adef816
 
6e44bc9
adef816
 
 
 
 
 
 
 
 
6e44bc9
adef816
6e44bc9
adef816
6e44bc9
 
 
 
 
 
adef816
 
6e44bc9
adef816
 
 
 
 
 
 
6e44bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adef816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91ef220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adef816
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
"""Minimal modeling.py file for HF compatibility and funny zero-shot experiments. Best used for inference, finetuning should work, but is untested with this implementation."""

import torch
import math

from torch import Tensor
from dataclasses import dataclass
from typing import Optional, Union, Any

from .raven_config_minimal import RavenConfig
from transformers.cache_utils import Cache, DynamicCache

###################### Huggingface Glue code I ##################################################################
from transformers import PreTrainedModel, GenerationMixin
from transformers.utils import ModelOutput
from transformers.generation.utils import GenerateDecoderOnlyOutput

import torch.nn.functional as F
from transformers import GenerationConfig


class RavenPreTrainedModel(PreTrainedModel):
    config_class = RavenConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["SandwichBlock"]
    _skip_keys_device_placement = ["past_key_values"]
    _tied_weights_keys = ["lm_head.weight"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_quantized_cache = False
    _supports_static_cache = False

    def _init_weights(self, module):
        if not torch.rand((1,)).is_meta:
            print("Random Initialization not implemented.")


@dataclass
class CausalLMOutputRecurrentLatents(ModelOutput):
    loss: Optional[torch.Tensor] = None
    log_ppl: Optional[torch.Tensor] = None
    logits: Optional[torch.Tensor] = None
    past_key_values: Optional[Cache] = None
    latent_states: Optional[torch.Tensor] = None
    hidden_states: Optional[torch.Tensor] = None
    attention_maps: Optional[dict[int, torch.Tensor]] = None
    stats: Optional[dict] = None


###################### Minimal implementation from here ############################################################


class RMSNorm(torch.nn.Module):
    """Saner dtype handling and slightly better for fusion"""

    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.weight = torch.nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        with torch.autocast(enabled=False, device_type=x.device.type if x.device.type != "meta" else "cuda"):
            return self._norm(x.float()).type_as(x) * self.weight

    def reset_parameters(self) -> None:
        torch.nn.init.ones_(self.weight)


class HuginnDynamicCache(DynamicCache):
    def __init__(self, lookup_strategy: str = "full") -> None:
        super().__init__()
        self._seen_tokens = 0
        self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
        self.value_cache: dict[int, dict[int, torch.Tensor]] = {}
        # structure: cache[index_of_layer_or_recurrent_step][index_in_sequence]
        # the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
        # per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
        # Also, It is critical that the head indices do not overlap with the recurrent iteration indices
        self.lookup_strategy = lookup_strategy

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        step_idx: int,
        lookup_strategy: Optional[str] = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
        if "compress-" in self.lookup_strategy and step_idx > 1:  # hardcode for current model!
            compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
            if "compress-s" in self.lookup_strategy:
                new_step_idx = (step_idx - 2) % compression_stage + 2
            else:
                new_step_idx = (step_idx - 2) // compression_stage + 2
            # @ print(step_idx, new_step_idx, compression_stage)
            step_idx = new_step_idx
        # Init
        if step_idx not in self.key_cache:
            self.key_cache[step_idx] = {}
            self.value_cache[step_idx] = {}
        # Update the number of seen tokens, we assume that step_idx=0 (first prelude) is always hit
        if step_idx == 0:
            self._seen_tokens += key_states.shape[-2]
        # Add entries to cache
        for idx, entry in enumerate(key_states.unbind(dim=-2)):
            if "compress-" not in self.lookup_strategy:
                assert step_idx < 0 or self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
            # print(f"Overwrote cache entry for step_idx {step_idx}") # likely the head
            self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
        for idx, entry in enumerate(value_states.unbind(dim=-2)):
            self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry

        # Materialize past state based on lookup strategy:
        if len(self.key_cache[step_idx]) == self._seen_tokens or self.lookup_strategy == "full":
            # All entries are present, materialize cache as normal
            return (
                torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
                torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
            )
        else:  # some entries where not previously computed
            # if lookup_strategy.startswith("latest"):
            #     latest_keys = []
            #     latest_values = []
            #     for token_pos in range(self._seen_tokens):
            #         # Find the latest step that has this token position
            #         max_step = max((s for s in range(step_idx + 1) if token_pos in self.key_cache[s]), default=None)
            #         if max_step is None:
            #             raise ValueError(f"No cache entry found for token position {token_pos}")
            #         latest_keys.append(self.key_cache[max_step][token_pos])
            #         latest_values.append(self.value_cache[max_step][token_pos])
            #     return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
            if lookup_strategy.startswith("latest-m4"):
                latest_keys = []
                latest_values = []
                for token_pos in range(self._seen_tokens):
                    # For steps >= 2, use modulo 4
                    if step_idx >= 2:
                        # Find valid steps for this token position
                        valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
                        max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
                    else:
                        max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
                    if max_step is None:
                        raise ValueError(f"No cache entry found for token position {token_pos}")
                    latest_keys.append(self.key_cache[max_step][token_pos])
                    latest_values.append(self.value_cache[max_step][token_pos])
                return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
            elif lookup_strategy.startswith("skip"):
                existing_keys = []
                existing_values = []
                for token_pos in range(self._seen_tokens):
                    if token_pos in self.key_cache[step_idx]:
                        existing_keys.append(self.key_cache[step_idx][token_pos])
                        existing_values.append(self.value_cache[step_idx][token_pos])
                return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
            elif lookup_strategy.startswith("randomized"):  # sanity check
                rand_keys = []
                rand_values = []
                for token_pos in range(self._seen_tokens):
                    if step_idx < 2:  # For prelude steps
                        max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
                    else:  # Get all steps from same block position
                        curr_modulo = (step_idx - 2) % 4 + 2
                        valid_steps = [
                            s
                            for s in range(2, step_idx + 1)
                            if (s - 2) % 4 + 2 == curr_modulo and token_pos in self.key_cache[s]
                        ]
                        max_step = valid_steps[torch.randint(len(valid_steps), (1,))]
                    rand_keys.append(self.key_cache[max_step][token_pos])
                    rand_values.append(self.value_cache[max_step][token_pos])
                return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
            else:
                raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")

    def reset(self) -> None:
        """Reset the cache state."""
        self._seen_tokens = 0
        self.key_cache.clear()
        self.value_cache.clear()

    def get_seq_length(self, step_idx: int = 0) -> int:
        return self._seen_tokens

    def get_memory_usage(self) -> float:
        total_bytes = 0
        # For each recurrent step/layer index
        for step_idx in self.key_cache:
            # Get the sequence cache for this step
            key_seq_cache = self.key_cache[step_idx]
            for seq_idx in key_seq_cache:
                key_tensor = key_seq_cache[seq_idx]
                # Add memory for of key tensors, assuming value is the same
                total_bytes += key_tensor.nelement() * key_tensor.element_size()
        return total_bytes * 2 / (1024 * 1024)


class CausalSelfAttention(torch.nn.Module):
    def __init__(self, config: RavenConfig) -> None:
        super().__init__()
        self.config = config
        self.n_head = config.num_attention_heads
        self.n_kv_heads = config.num_key_value_heads
        self.head_dim = config.n_embd // self.n_head

        shape = (self.n_head + 2 * self.n_kv_heads) * self.head_dim
        self.chunks = [config.n_embd, self.n_kv_heads * self.head_dim, self.n_kv_heads * self.head_dim]
        self.Wqkv = torch.nn.Linear(config.n_embd, shape, bias=False)
        if config.qk_bias:
            self.qk_bias = torch.nn.Parameter(torch.zeros(2, 1, self.n_head, self.head_dim))
        self.proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=False)

    def forward(
        self,
        x: Tensor,
        freqs_cis: Tensor,
        step_idx: int,
        mask: Optional[Tensor] = None,
        past_key_values: Optional[Cache] = None,
        return_attn: bool = False,
    ) -> tuple[Tensor, Optional[Tensor]]:
        B, S, E = x.shape  # batch size, sequence length, embedding dimensionality (n_embd)
        q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
        q = q.view(B, S, self.n_head, self.head_dim)
        k = k.view(B, S, self.n_kv_heads, self.head_dim)
        v = v.view(B, S, self.n_kv_heads, self.head_dim)
        # bias?
        if self.config.qk_bias:
            q_bias, k_bias = self.qk_bias.split(1, dim=0)
            q, k = (q + q_bias).to(q.dtype), (k + k_bias).to(q.dtype)
        # apply rotary
        q, k = apply_rotary_emb_complex_like(q, k, freqs_cis=freqs_cis)

        q = q.transpose(1, 2)  # (B, nh, S, hs)
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)

        if past_key_values is not None:
            k, v = past_key_values.update(k, v, step_idx)

        if return_attn:
            y, attention_map = self.compute_eager_sdpa(q, k, v, attn_mask=mask)
        else:
            y = torch.nn.functional.scaled_dot_product_attention(
                q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=q.shape[2] > 1
            )
        y = y.transpose(1, 2).reshape(B, S, E).contiguous()  # reshape is a view if possible (it mostly is)
        return self.proj(y), attention_map if return_attn else None

    def compute_eager_sdpa(self, q, k, v, attn_mask):
        scale = 1.0 / math.sqrt(self.head_dim)
        scores = torch.matmul(q, k.transpose(-2, -1)) * scale

        if attn_mask is not None:
            scores = scores + attn_mask
        if q.shape[2] > 1:
            causal_mask = torch.triu(torch.ones(q.shape[2], q.shape[2]), diagonal=1).bool()
            scores.masked_fill_(causal_mask.to(scores.device), float("-inf"))

        attention_weights = torch.nn.functional.softmax(scores, dim=-1)
        y = torch.matmul(attention_weights, v)
        return y, attention_weights.max(dim=1)[0]


class GatedMLP(torch.nn.Module):
    def __init__(self, config: RavenConfig, in_features: int = 0) -> None:
        super().__init__()
        in_features = config.n_embd if in_features == 0 else in_features
        self.fc = torch.nn.Linear(in_features, config.intermediate_size * 2, bias=False)

        self.proj = torch.nn.Linear(config.intermediate_size, config.n_embd, bias=False)
        self.nonlin = torch.nn.SiLU()

    def forward(self, x: Tensor) -> Tensor:
        # modified to single FC layer to improve parallelism
        x_fc_1, x_fc_2 = self.fc(x).chunk(2, dim=-1)
        x = self.nonlin(x_fc_1) * x_fc_2
        return self.proj(x)


class SandwichBlock(torch.nn.Module):
    expanded = False

    def __init__(self, config: RavenConfig, layer_id: int) -> None:
        super().__init__()
        self.norm_1 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.attn = CausalSelfAttention(config)
        self.norm_2 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.mlp = GatedMLP(config)
        self.norm_3 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.norm_4 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.layer_id = layer_id

    def forward(
        self,
        x: Tensor,
        freqs_cis: Tensor,
        step_idx: int,
        mask: Optional[Tensor] = None,
        past_key_values: Optional[Cache] = None,
        return_attn: bool = False,
    ) -> tuple[Tensor, Optional[Tensor]]:
        attn_out, attn_map = self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values, return_attn)
        x = self.norm_2(attn_out + x)
        x = self.norm_4(self.mlp(self.norm_3(x)) + x)
        return x, attn_map


class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
    def __init__(
        self,
        config: RavenConfig,
    ) -> None:
        super().__init__(config)
        self.config = config

        # Transformer layers
        prelude = torch.nn.ModuleList(SandwichBlock(config, layer_id=i) for i in range(config.n_layers_in_prelude))
        adapter = torch.nn.Linear(config.n_embd * 2, config.n_embd, bias=config.bias)
        core_block = torch.nn.ModuleList(
            SandwichBlock(config, layer_id=i + config.n_layers_in_prelude)
            for i in range(config.n_layers_in_recurrent_block)
        )
        o = config.n_layers_in_prelude + config.n_layers_in_recurrent_block * config.mean_recurrence
        coda = torch.nn.ModuleList(SandwichBlock(config, layer_id=i + o) for i in range(config.n_layers_in_coda))

        self.transformer = torch.nn.ModuleDict(
            dict(
                wte=torch.nn.Embedding(config.padded_vocab_size, config.n_embd),
                prelude=prelude,
                adapter=adapter,
                core_block=core_block,
                coda=coda,
                ln_f=RMSNorm(config.n_embd, eps=config.norm_eps),  # used twice :>
            )
        )
        self.emb_scale = config.init_values["embed_scale"]
        # Head
        self.lm_head = torch.nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
        if self.config.tie_embeddings:
            self.tie_weights()
        # rope
        self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)

    def get_input_embeddings(self):
        return self.transformer.wte

    def get_output_embeddings(self):
        return self.lm_head

    def _precompute_freqs_cis(self):
        # can actually be a buffer now, and remains in fp32! (at least in the settings I tested)
        freqs_cis = precompute_freqs_cis(
            self.config.n_embd // self.config.num_attention_heads, self.config.block_size, self.config.rope_base, 1
        )
        return freqs_cis

    def forward(
        self,
        input_ids: torch.Tensor,
        input_embeds: Optional[torch.Tensor] = None,
        input_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        num_steps: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        output_details: dict = {
            "return_logits": True,
            "return_latents": True,
            "return_attention": False,
            "return_head": False,
            "return_stats": False,
        },
        use_cache: bool = False,
        cache_position: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> CausalLMOutputRecurrentLatents:
        # Support multiple position formats:
        if position_ids is None and cache_position is None:
            freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
        elif position_ids is not None:
            freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
        elif cache_position is not None:
            freqs_cis = self.freqs_cis[:, cache_position]

        if input_embeds is None:
            input_embeds = self.transformer.wte(input_ids)

        if self.emb_scale != 1:
            input_embeds = input_embeds * self.emb_scale  # type: ignore

        if use_cache and past_key_values is None:
            past_key_values = HuginnDynamicCache()
        attn_maps = {}
        return_attn = output_details["return_attention"]

        # Non-recurrent prelude
        for block_idx, block in enumerate(self.transformer.prelude):
            input_embeds, attn_map = block(
                input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn=return_attn
            )
            attn_maps[block_idx] = attn_map

        # Main recurrence
        x, num_steps_no_grad, num_steps_with_grad, xk, block_idx, attn_maps = self.iterate_forward(
            input_embeds,  # type: ignore
            input_states,
            freqs_cis,
            block_idx,
            attention_mask,
            past_key_values,
            num_steps,
            attn_maps,
            return_attn=return_attn,
        )
        latent_states = x.clone().detach()

        # Coda layers
        for block_idx, block in enumerate(self.transformer.coda, start=1):
            x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values, return_attn=return_attn)
            attn_maps[-block_idx] = attn_map
        x = self.transformer.ln_f(x)

        # Prediction head, assuming labels really are labels and not equal to input_ids
        if labels is not None:
            logits = self.lm_head(x).float()
            loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
            log_ppl = loss.clone().detach().exp()
        else:
            logits = self.lm_head(x).float()
            loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)

        return CausalLMOutputRecurrentLatents(
            loss=loss,
            log_ppl=log_ppl,
            logits=logits if output_details["return_logits"] else None,
            past_key_values=past_key_values,
            hidden_states=x if output_details["return_head"] else None,
            latent_states=latent_states if output_details["return_latents"] else None,
            attention_maps=attn_maps if output_details["return_attention"] else None,  # type: ignore
            stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
            if output_details["return_stats"]
            else None,
        )

    @torch._dynamo.disable(recursive=False)  # type: ignore
    def iterate_forward(
        self,
        input_embeds,
        input_states,
        freqs_cis,
        block_idx,
        mask,
        past_key_values: Optional[Cache] = None,
        num_steps: Optional[torch.Tensor] = None,
        attn_maps: dict = {},
        return_attn: bool = False,
    ):
        x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()
        if num_steps is None:
            num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler()  # type: ignore
        elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
            num_steps_no_grad, num_steps_with_grad = num_steps
        else:
            num_steps_no_grad, num_steps_with_grad = num_steps, torch.tensor(0) if not x.is_meta else 0

        with torch.no_grad():
            # ultra annoying in ddp due to
            # https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
            # for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
            # and all parameters are always used
            for step in range(num_steps_no_grad):
                xk = x
                x, block_idx, attn_maps = self.core_block_forward(
                    xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps, return_attn
                )

        for step in range(num_steps_with_grad):
            xk = x
            x, block_idx, attn_maps = self.core_block_forward(
                xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps, return_attn
            )
        return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx, attn_maps

    def core_block_forward(
        self,
        x,
        input_embeds,
        freqs_cis,
        mask,
        past_key_values,
        block_idx: Union[torch.Tensor, int],
        attn_maps: dict = {},
        return_attn: bool = False,
    ):
        x = self.transformer.adapter(torch.cat([x, input_embeds.to(x.device)], dim=-1))
        for idx, block in enumerate(self.transformer.core_block, start=1):
            x, attn_map = block(x, freqs_cis, block_idx + idx, mask, past_key_values, return_attn=return_attn)
            attn_maps[block_idx + idx] = attn_map
        return x, block_idx + idx, attn_maps

    @torch.no_grad()
    def iterate_one_step(
        self,
        input_embeds,
        input_states,
        position_ids: Optional[torch.Tensor] = None,
        cache_position: Optional[torch.Tensor] = None,
        block_idx: Union[torch.Tensor, int] = 0,
        attention_mask: Optional[Tensor] = None,
        past_key_values: Optional[Cache] = None,
        attn_maps: dict = {},
    ):
        if position_ids is None and cache_position is None:
            freqs_cis = self.freqs_cis[:, : input_embeds.shape[1]]
        elif position_ids is not None:
            freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
        elif cache_position is not None:
            freqs_cis = self.freqs_cis[:, cache_position]
        x, block_idx, attn_maps = self.core_block_forward(
            input_states, input_embeds, freqs_cis, attention_mask, past_key_values, block_idx, attn_maps
        )
        return x, block_idx, attn_maps

    def predict_from_latents(
        self,
        latents,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        cache_position: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        return_attn: bool = False,
        attn_maps: dict = {},
    ):
        if position_ids is None and cache_position is None:
            freqs_cis = self.freqs_cis[:, : latents.shape[1]]
        elif position_ids is not None:
            freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
        elif cache_position is not None:
            freqs_cis = self.freqs_cis[:, cache_position]
        x = self.transformer.ln_f(latents)
        # Coda layers
        for block_idx, block in enumerate(self.transformer.coda, start=1):
            x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values)
        attn_maps[block_idx] = attn_map
        x = self.transformer.ln_f(x)

        logits = self.lm_head(x).float()

        return CausalLMOutputRecurrentLatents(
            loss=torch.as_tensor(0.0),
            log_ppl=torch.as_tensor(0.0),
            logits=logits,
            past_key_values=past_key_values,
            attention_maps=attn_maps if len(attn_maps) > 0 else None,
        )

    def embed_inputs(
        self,
        input_ids: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        use_cache: bool = False,
        cache_position: Optional[torch.Tensor] = None,
        return_attn: bool = False,
        **kwargs,
    ) -> tuple[torch.Tensor, int, dict[int, Tensor]]:
        # Support multiple position formats:
        if position_ids is None and cache_position is None:
            freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
        elif position_ids is not None:
            freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
        elif cache_position is not None:
            freqs_cis = self.freqs_cis[:, cache_position]

        input_embeds = self.transformer.wte(input_ids)

        if self.emb_scale != 1:
            input_embeds = input_embeds * self.emb_scale  # type: ignore

        if use_cache and past_key_values is None:
            past_key_values = HuginnDynamicCache()

        # Non-recurrent prelude
        attn_maps = {}
        for block_idx, block in enumerate(self.transformer.prelude):
            input_embeds, attn_maps = block(
                input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn
            )
        return input_embeds, block_idx, attn_maps

    @torch._dynamo.disable(recursive=False)  # type: ignore
    def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
        """Outputs are long tensors so that they can be passed through compiled functions"""
        t = max(self.config.mean_recurrence - self.config.mean_backprop_depth, 0)
        s = self.config.mean_backprop_depth
        if torch.rand((1,)).is_meta:  # annoying clause to make meta-tensor-based flop counting work
            # these values are only the mean TFLOPs of the randomized sampler
            # Note that this clause also breaks the contract, and returns ints in meta tensor mode
            return t, s  # type: ignore
        if self.training:
            sigma = 0.5
            mu = math.log(t + s) - (sigma**2 / 2)
            rate = torch.zeros((1,)).log_normal_(mean=mu, std=sigma)
            p = torch.poisson(torch.tensor([rate], dtype=torch.float)) + 1
            n = torch.clamp(p - s, min=0)
            k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
        else:
            n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)

        return n.to(dtype=torch.long), k.to(dtype=torch.long)

    def initialize_state(self, input_embeds, deterministic: bool = False):
        x = torch.randn_like(input_embeds)
        std = self.config.init_values["std"]
        torch.nn.init.trunc_normal_(x, mean=0.0, std=std, a=-3 * std, b=3 * std)
        if self.emb_scale != 1:
            x = x * self.emb_scale
        return x if not deterministic else x.zero_()

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor,
        past_key_values: Optional[Cache] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs,
    ):
        model_inputs = {}
        model_inputs["cache_position"] = cache_position
        current_input_length = input_ids.shape[1]
        if past_key_values is not None:
            if type(past_key_values) != HuginnDynamicCache:
                # Need to use custom cache, detect and replace HF dynamic cache if generate injects it
                assert past_key_values.get_seq_length() == 0
                past_key_values = HuginnDynamicCache()
            model_inputs["past_key_values"] = past_key_values if kwargs["use_cache"] else None
            input_ids = input_ids[:, cache_position]  # type: ignore
        model_inputs["input_ids"] = input_ids.clone(memory_format=torch.contiguous_format)

        if cache_position is None:
            position_ids = torch.arange(current_input_length)[None, :].to(input_ids.device)
            model_inputs["position_ids"] = position_ids[:, -current_input_length:].clone(
                memory_format=torch.contiguous_format
            )  # some form of position_ids is a critical argument for the model to correctly apply rope!

        # forward all other entries
        for key, value in kwargs.items():
            if key not in model_inputs:
                model_inputs[key] = value
        return model_inputs

    @torch.no_grad()
    def generate(self, *args, **kwargs):
        """Dispatcher - use HF generate in all normal cases.
        If BOTH `criterion` AND `exit_threshold` are provided as not None, we use adaptive compute.
        """
        if kwargs.get("criterion", None) is not None and kwargs.get("exit_threshold", None) is not None:
            print("Dispatching to custom generate function call")
            return self.generate_with_adaptive_compute(*args, **kwargs)
        else:
            return super().generate(*args, **kwargs)

    @torch.no_grad()
    def generate_minimal(
        self,
        input_ids: torch.LongTensor,
        generation_config: Optional[GenerationConfig] = None,  # type: ignore
        tokenizer=None,
        streamer=None,
        continuous_compute=False,  # warm-start state / continuous CoT
        cache_kwargs: dict = {},
        **model_kwargs,
    ) -> Union[torch.Tensor, dict[str, Any]]:
        """Minimal single-sequence generation. Template for more complicated generate tasks"""
        # Setup
        if generation_config is None:
            generation_config: GenerationConfig = self.generation_config  # type: ignore
        model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
        model_kwargs["use_cache"] = True
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
        stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
        if continuous_compute:
            embedded_inputs, _, _ = self.embed_inputs(input_ids)
            model_kwargs["input_states"] = self.initialize_state(embedded_inputs)
        # Generate tokens
        for _ in range(generation_config.max_length - input_ids.shape[1]):
            # Forward pass
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            outputs = self(**model_inputs)
            next_token_logits = outputs.logits[0, -1, :]
            if continuous_compute:
                current_last_latent = outputs.latent_states[:, -1:, :]

            # Sample or select next token
            if generation_config.do_sample:
                if generation_config.temperature:
                    next_token_logits = next_token_logits / generation_config.temperature

                probs = F.softmax(next_token_logits, dim=-1)

                # Apply top_k
                if generation_config.top_k:
                    top_k_probs, _ = torch.topk(probs, generation_config.top_k)
                    probs[probs < top_k_probs[-1]] = 0
                # Apply top_p
                if generation_config.top_p:
                    sorted_probs = torch.sort(probs, descending=True)[0]
                    cumsum = torch.cumsum(sorted_probs, dim=-1)
                    probs[cumsum > generation_config.top_p] = 0
                # Apply min_p
                if generation_config.min_p:
                    probs[probs < generation_config.min_p * probs.max()] = 0

                probs = probs / probs.sum()
                next_token = torch.multinomial(probs, num_samples=1)
            else:
                next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)

            input_ids = torch.cat([input_ids, next_token[None, :]], dim=-1)  # type: ignore

            if streamer:
                streamer.put(next_token.cpu())

            # Update model kwargs
            model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
            if continuous_compute:
                model_kwargs["input_states"] = current_last_latent

            # Check if we hit a stop token
            if stop_tokens is not None and next_token in stop_tokens:
                break

        if streamer:
            streamer.end()

        if generation_config.return_dict_in_generate:
            return GenerateDecoderOnlyOutput(
                sequences=input_ids,
                scores=None,
                logits=None,
                attentions=None,
                hidden_states=None,
                past_key_values=model_kwargs.get("past_key_values"),
            )
        return input_ids

    @torch.no_grad()
    def generate_with_adaptive_compute(
        self,
        input_ids: torch.LongTensor,
        generation_config: Optional[GenerationConfig] = None,  # type: ignore
        tokenizer=None,
        streamer=None,
        continuous_compute=False,  # warm-start state / continuous CoT
        latent_dampening=False,
        criterion="entropy-diff",
        exit_threshold: Union[str, float, int] = "auto",
        cache_kwargs: dict = {},
        **model_kwargs,
    ) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
        """
        Generate tokens with adaptive compute. This is NOT the most efficient implementation.
        For batches, on each token, we iterate until the entire batch finishes.
        """
        # Setup
        if generation_config is None:
            generation_config: GenerationConfig = self.generation_config  # type: ignore
        model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
        model_kwargs["use_cache"] = True
        model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
        stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
        batch_size = input_ids.shape[0]
        compute_steps = []

        # Set up continuous compute if enabled
        if continuous_compute:
            embedded_inputs, _, _ = self.embed_inputs(input_ids)
            current_last_latents = self.initialize_state(embedded_inputs)

        # Track which sequences have finished
        finished_sequences = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)

        # Generate tokens
        for step in range(generation_config.max_length - input_ids.shape[1]):
            # Adaptive compute forward
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            aux_inputs = {
                k: model_inputs[k] for k in ["cache_position", "past_key_values", "attention_mask"] if k in model_inputs
            }
            embedded_inputs, block_idx, _ = self.embed_inputs(model_inputs["input_ids"], **aux_inputs)
            if not continuous_compute:
                current_latents = self.initialize_state(embedded_inputs, deterministic=False)
            else:
                current_latents = current_last_latents

            # Initialize criterion tracking for each sequence in batch
            exit_values_per_seq = [[] for _ in range(batch_size)]
            compute_steps_per_seq = [0] * batch_size
            exit_reached = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)

            # Set up criterions based on selected strategy
            if criterion == "entropy-diff":
                entropy = torch.ones(batch_size, device=input_ids.device) * 100.0
                exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
            elif criterion in ["latent-diff", "none"]:
                exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
            elif "kl" in criterion:
                V = self.config.padded_vocab_size
                log_probs = ((1 / V) * torch.ones(batch_size, V, device=input_ids.device)).log()
                if criterion == "minp-kl":
                    exit_threshold = 1e-6 if exit_threshold == "auto" else float(exit_threshold)
                else:
                    exit_threshold = 5e-4 if exit_threshold == "auto" else float(exit_threshold)
            elif criterion == "argmax-stability":
                stable_for_n_steps = torch.zeros(batch_size, dtype=torch.long, device=input_ids.device)
                current_argmax = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) * -1
                exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
            else:
                raise ValueError("Invalid adaptive compute strategy.")

            all_latents = []
            next_token_logits = None

            # Iterate through compute steps
            for compute_step in range(model_inputs["num_steps"]):
                prev_latents = current_latents.clone()
                current_latents, block_idx, _ = self.iterate_one_step(
                    embedded_inputs, current_latents, block_idx=block_idx, **aux_inputs
                )

                if latent_dampening:
                    all_latents.append(current_latents)

                if step > 0:  # do not exit in prefill:
                    # Check exit condition for each sequence in batch
                    if criterion == "entropy-diff":
                        prev_entropy = entropy
                        outputs = self.predict_from_latents(current_latents, **aux_inputs)
                        logits: torch.Tensor = outputs.logits  # type: ignore
                        probs = F.softmax(logits[:, -1, :], dim=-1)
                        entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1)
                        exit_values = (entropy - prev_entropy).abs()

                    elif criterion == "latent-diff":
                        norm_diff = (prev_latents - current_latents).norm(dim=-1) / current_latents.norm(dim=-1)
                        exit_values = norm_diff.mean(dim=-1)

                    elif "kl" in criterion:
                        outputs = self.predict_from_latents(current_latents, **aux_inputs)
                        logits: torch.Tensor = outputs.logits  # type: ignore
                        prev_log_probs = log_probs
                        if criterion == "minp-kl":
                            probs = F.softmax(logits[:, -1, :], dim=-1)
                            max_probs = probs.max(dim=-1, keepdim=True)[0]
                            probs_mask = probs < (0.1 * max_probs)
                            masked_probs = probs
                            masked_probs[probs_mask] = 1 / V
                            probs = masked_probs / masked_probs.sum(dim=-1, keepdim=True)
                            log_probs = probs.log()
                        else:
                            log_probs = F.log_softmax(logits[:, -1, :], dim=-1)
                        exit_values = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)

                    elif criterion == "argmax-stability":
                        prev_argmax = current_argmax
                        outputs = self.predict_from_latents(current_latents, **aux_inputs)
                        logits: torch.Tensor = outputs.logits  # type: ignore
                        current_argmax = logits[:, -1, :].argmax(dim=-1)
                        stable_for_n_steps = torch.where(
                            current_argmax == prev_argmax, stable_for_n_steps + 1, torch.zeros_like(stable_for_n_steps)
                        )
                        exit_values = stable_for_n_steps

                    # Record values and check exits for each sequence
                    for i in range(batch_size):
                        if not exit_reached[i] and not finished_sequences[i]:
                            exit_values_per_seq[i].append(exit_values[i].item())

                    new_exits = (
                        exit_values < exit_threshold
                        if criterion != "argmax-stability"
                        else exit_values >= exit_threshold
                    )
                    new_exits = new_exits & ~exit_reached & ~finished_sequences

                    if new_exits.any():
                        exit_reached = exit_reached | new_exits
                        if criterion == "latent-diff":
                            # Normally we don't compute the output for latent-diff, but when there is an exit,
                            # we need to compute and save the output
                            outputs = self.predict_from_latents(current_latents, **aux_inputs)
                            logits: torch.Tensor = outputs.logits  # type: ignore
                        if next_token_logits is None:
                            next_token_logits = logits[:, -1, :].clone()
                        else:
                            next_token_logits = torch.where(
                                new_exits.unsqueeze(1).expand_as(logits[:, -1, :]), logits[:, -1, :], next_token_logits
                            )
                        for i in range(batch_size):
                            if new_exits[i]:
                                compute_steps_per_seq[i] = compute_step + 1

                    # If all sequences have exited, break early
                    if (exit_reached | finished_sequences).all():
                        break
            # This else is if the for loop finished without breaking
            else:
                if not latent_dampening:
                    outputs = self.predict_from_latents(current_latents, **aux_inputs)
                else:
                    dampened_latents = torch.sum(torch.cat(all_latents, dim=0), dim=0, keepdim=True)
                    outputs = self.predict_from_latents(dampened_latents, **aux_inputs)

                # For sequences that didn't exit early, use the final logits
                if next_token_logits is None:
                    next_token_logits = outputs.logits[:, -1, :]  # type: ignore
                else:
                    # Only update logits for sequences that didn't exit early
                    non_exit_mask = ~exit_reached & ~finished_sequences
                    next_token_logits = torch.where(
                        non_exit_mask.unsqueeze(1).expand_as(next_token_logits),
                        outputs.logits[:, -1, :],  # type: ignore
                        next_token_logits,
                    )

                    # Record compute steps for non-exited sequences
                    for i in range(batch_size):
                        if non_exit_mask[i]:
                            compute_steps_per_seq[i] = model_inputs["num_steps"]

            # Save latent states for continuous compute if enabled
            if continuous_compute:
                current_last_latents = current_latents[:, -1:, :]

            # Record compute steps for this token generation
            compute_steps.append([compute_steps_per_seq, exit_values_per_seq])

            # Sample or select next token based on generation config
            if generation_config.do_sample:
                next_token = self._sample_next_token(
                    next_token_logits,
                    generation_config.temperature,
                    generation_config.top_k,
                    generation_config.top_p,
                    generation_config.min_p,
                )
            else:
                next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)  # type: ignore

            input_ids = torch.cat([input_ids, next_token], dim=-1)  # type: ignore

            if streamer:
                streamer.put(next_token.cpu())

            # Update model kwargs
            model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
            if continuous_compute:
                model_kwargs["input_states"] = current_last_latents

            # Check for finished sequences
            for i in range(batch_size):
                if not finished_sequences[i] and stop_tokens is not None and next_token[i, 0] in stop_tokens:
                    finished_sequences[i] = True

            # Break if all sequences are finished
            if finished_sequences.all():
                break

        if streamer:
            streamer.end()

        if generation_config.return_dict_in_generate:
            return GenerateDecoderOnlyOutput(
                sequences=input_ids,
                scores=compute_steps,  # type: ignore
                logits=None,
                attentions=None,
                hidden_states=None,
                past_key_values=model_kwargs.get("past_key_values"),
            )
        return input_ids

    def _get_stops(self, generation_config, tokenizer):
        stop_tokens = set()
        if generation_config.eos_token_id is not None:
            stop_tokens.add(generation_config.eos_token_id)
        if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
            for s in generation_config.stop_strings:
                token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
                stop_tokens.add(token_id)
        return torch.tensor(list(stop_tokens))

    def _sample_next_token(self, next_token_logits, temperature=None, top_k=None, top_p=None, min_p=None):
        """Helper function to sample the next token."""
        if temperature:
            next_token_logits = next_token_logits / temperature

        probs = F.softmax(next_token_logits, dim=-1)

        # Apply top_k
        if top_k:
            top_k_values, _ = torch.topk(probs, top_k, dim=-1)
            min_values = top_k_values[:, -1].unsqueeze(-1).expand_as(probs)
            probs = torch.where(probs < min_values, torch.zeros_like(probs), probs)

        # Apply top_p (nucleus sampling)
        if top_p:
            sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1)
            cumulative_probs = torch.cumsum(sorted_probs, dim=-1)

            # Create mask for probs to keep
            remove_indices = cumulative_probs > top_p
            remove_indices[:, 0] = False  # Keep at least the top probability

            # Convert sorted indices mask back to original indices mask
            mask = torch.zeros_like(probs, dtype=torch.bool)
            for i in range(probs.shape[0]):
                mask[i, sorted_indices[i, remove_indices[i]]] = True

            probs = torch.where(mask, torch.zeros_like(probs), probs)

        # Apply min_p
        if min_p:
            max_probs = probs.max(dim=-1, keepdim=True)[0]
            min_p_threshold = min_p * max_probs
            probs = torch.where(probs < min_p_threshold, torch.zeros_like(probs), probs)

        # Renormalize probabilities
        probs = probs / probs.sum(dim=-1, keepdim=True).clamp(min=1e-10)

        # Sample from the distribution
        next_token = torch.multinomial(probs, num_samples=1)
        return next_token

    def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
        probs = torch.softmax(logits.float(), dim=-1)
        prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
        residual_diff = (x - latent_states).norm(dim=-1)
        rel_residual = residual_diff / latent_states.norm(dim=-1)
        stats = {
            "entropy": prob_entropy,
            "residual_diff": residual_diff,
            "rel_residual": rel_residual,
            "num_steps_no_grad": num_steps_no_grad,
            "num_steps_with_grad": num_steps_with_grad,
        }
        return stats


#################################### Utils #######################################################################
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, condense_ratio: int = 1):
    with torch.autocast("cuda", enabled=False):
        inv_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
        t = torch.arange(end, dtype=torch.float32, device=inv_freqs.device) / condense_ratio
        freqs = torch.outer(t, inv_freqs).float()
        return torch.stack([torch.cos(freqs)[None, :, None, :], torch.sin(freqs)[None, :, None, :]], dim=4)
        # equivalent to
        # freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
        # cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)


def apply_rotary_emb_complex_like(q: Tensor, k: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
    with torch.autocast("cuda", enabled=False):
        qk_r2 = torch.cat([q, k], dim=2).unflatten(dim=-1, sizes=(-1, 2)).float()  # cast to float32 for smooth skin
        rotated_qk_r2 = torch.stack(
            [
                qk_r2[..., 0] * freqs_cis[..., 0] - qk_r2[..., 1] * freqs_cis[..., 1],
                qk_r2[..., 1] * freqs_cis[..., 0] + qk_r2[..., 0] * freqs_cis[..., 1],
            ],
            -1,
        ).flatten(3)
        rotated_qk = rotated_qk_r2
        return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2)  # type: ignore


#################################### HF registration ############################################################

from transformers import AutoConfig, AutoModel, AutoModelForCausalLM

# New
RavenConfig.register_for_auto_class()

RavenForCausalLM.register_for_auto_class("AutoModel")
RavenForCausalLM.register_for_auto_class("AutoModelForCausalLM")

# Old?
AutoConfig.register("huginn_raven", RavenConfig)
AutoModel.register(RavenConfig, RavenForCausalLM)
AutoModelForCausalLM.register(RavenConfig, RavenForCausalLM)