File size: 26,613 Bytes
79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 79136a6 fdb2c71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
---
language:
- en
tags:
- sentence-transformers
- cross-encoder
- text-classification
- generated_from_trainer
- dataset_size:404290
- loss:BinaryCrossEntropyLoss
base_model: distilbert/distilroberta-base
datasets:
- sentence-transformers/quora-duplicates
pipeline_tag: text-classification
library_name: sentence-transformers
metrics:
- accuracy
- accuracy_threshold
- f1
- f1_threshold
- precision
- recall
- average_precision
co2_eq_emissions:
emissions: 26.889480385249758
energy_consumed: 0.06917762292257246
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.214
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: CrossEncoder based on distilbert/distilroberta-base
results:
- task:
type: cross-encoder-classification
name: Cross Encoder Classification
dataset:
name: quora duplicates dev
type: quora-duplicates-dev
metrics:
- type: accuracy
value: 0.8938
name: Accuracy
- type: accuracy_threshold
value: 0.5088549852371216
name: Accuracy Threshold
- type: f1
value: 0.8612281373675477
name: F1
- type: f1_threshold
value: 0.3856155276298523
name: F1 Threshold
- type: precision
value: 0.8182920912178554
name: Precision
- type: recall
value: 0.908919428725411
name: Recall
- type: average_precision
value: 0.920292628179356
name: Average Precision
- task:
type: cross-encoder-classification
name: Cross Encoder Classification
dataset:
name: quora duplicates test
type: quora-duplicates-test
metrics:
- type: accuracy
value: 0.8938
name: Accuracy
- type: accuracy_threshold
value: 0.5091445446014404
name: Accuracy Threshold
- type: f1
value: 0.8612281373675477
name: F1
- type: f1_threshold
value: 0.38580775260925293
name: F1 Threshold
- type: precision
value: 0.8182920912178554
name: Precision
- type: recall
value: 0.908919428725411
name: Recall
- type: average_precision
value: 0.92029239602284
name: Average Precision
---
# CrossEncoder based on distilbert/distilroberta-base
This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
- **Maximum Sequence Length:** 514 tokens
- **Training Dataset:**
- [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("sentence_transformers_model_id")
# Get scores for pairs...
pairs = [
['What is the step by step guide to invest in share market in india?', 'What is the step by step guide to invest in share market?'],
['What is the story of Kohinoor (Koh-i-Noor) Diamond?', 'What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?'],
['How can I increase the speed of my internet connection while using a VPN?', 'How can Internet speed be increased by hacking through DNS?'],
['Why am I mentally very lonely? How can I solve it?', 'Find the remainder when [math]23^{24}[/math] is divided by 24,23?'],
['Which one dissolve in water quikly sugar, salt, methane and carbon di oxide?', 'Which fish would survive in salt water?'],
]
scores = model.predict(pairs)
print(scores.shape)
# [5]
# ... or rank different texts based on similarity to a single text
ranks = model.rank(
'What is the step by step guide to invest in share market in india?',
[
'What is the step by step guide to invest in share market?',
'What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?',
'How can Internet speed be increased by hacking through DNS?',
'Find the remainder when [math]23^{24}[/math] is divided by 24,23?',
'Which fish would survive in salt water?',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Cross Encoder Classification
* Datasets: `quora-duplicates-dev` and `quora-duplicates-test`
* Evaluated with [<code>CEClassificationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CEClassificationEvaluator)
| Metric | quora-duplicates-dev | quora-duplicates-test |
|:----------------------|:---------------------|:----------------------|
| accuracy | 0.8938 | 0.8938 |
| accuracy_threshold | 0.5089 | 0.5091 |
| f1 | 0.8612 | 0.8612 |
| f1_threshold | 0.3856 | 0.3858 |
| precision | 0.8183 | 0.8183 |
| recall | 0.9089 | 0.9089 |
| **average_precision** | **0.9203** | **0.9203** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### quora-duplicates
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 404,290 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 1 characters</li><li>mean: 59.15 characters</li><li>max: 354 characters</li></ul> | <ul><li>min: 6 characters</li><li>mean: 60.74 characters</li><li>max: 399 characters</li></ul> | <ul><li>0: ~64.20%</li><li>1: ~35.80%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>What are the features of the Indian caste system?</code> | <code>What triggers you the most when you play video games?</code> | <code>0</code> |
| <code>What is the best place to learn Mandarin Chinese in Singapore?</code> | <code>What is the best place in Singapore for durian in December?</code> | <code>0</code> |
| <code>What will be Hillary Clinton's India policy if she wins the election?</code> | <code>How would the bilateral relationship between India and the USA be under Hillary Clinton's presidency?</code> | <code>1</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#binarycrossentropyloss)
### Evaluation Dataset
#### quora-duplicates
* Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 404,290 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 11 characters</li><li>mean: 57.9 characters</li><li>max: 244 characters</li></ul> | <ul><li>min: 12 characters</li><li>mean: 59.33 characters</li><li>max: 221 characters</li></ul> | <ul><li>0: ~62.00%</li><li>1: ~38.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:---------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:---------------|
| <code>What is the step by step guide to invest in share market in india?</code> | <code>What is the step by step guide to invest in share market?</code> | <code>0</code> |
| <code>What is the story of Kohinoor (Koh-i-Noor) Diamond?</code> | <code>What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?</code> | <code>0</code> |
| <code>How can I increase the speed of my internet connection while using a VPN?</code> | <code>How can Internet speed be increased by hacking through DNS?</code> | <code>0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#binarycrossentropyloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | quora-duplicates-dev_average_precision | quora-duplicates-test_average_precision |
|:------:|:----:|:-------------:|:---------------:|:--------------------------------------:|:---------------------------------------:|
| -1 | -1 | - | - | 0.3711 | - |
| 0.0167 | 100 | 0.6574 | - | - | - |
| 0.0333 | 200 | 0.4804 | - | - | - |
| 0.0500 | 300 | 0.4406 | - | - | - |
| 0.0666 | 400 | 0.4208 | - | - | - |
| 0.0833 | 500 | 0.3929 | 0.3958 | 0.8210 | - |
| 0.0999 | 600 | 0.3986 | - | - | - |
| 0.1166 | 700 | 0.3743 | - | - | - |
| 0.1332 | 800 | 0.3938 | - | - | - |
| 0.1499 | 900 | 0.3602 | - | - | - |
| 0.1665 | 1000 | 0.3714 | 0.3437 | 0.8565 | - |
| 0.1832 | 1100 | 0.3486 | - | - | - |
| 0.1998 | 1200 | 0.3479 | - | - | - |
| 0.2165 | 1300 | 0.3417 | - | - | - |
| 0.2331 | 1400 | 0.3425 | - | - | - |
| 0.2498 | 1500 | 0.3353 | 0.3264 | 0.8742 | - |
| 0.2664 | 1600 | 0.3335 | - | - | - |
| 0.2831 | 1700 | 0.3274 | - | - | - |
| 0.2998 | 1800 | 0.3284 | - | - | - |
| 0.3164 | 1900 | 0.3118 | - | - | - |
| 0.3331 | 2000 | 0.3073 | 0.3282 | 0.8826 | - |
| 0.3497 | 2100 | 0.3233 | - | - | - |
| 0.3664 | 2200 | 0.3072 | - | - | - |
| 0.3830 | 2300 | 0.314 | - | - | - |
| 0.3997 | 2400 | 0.3065 | - | - | - |
| 0.4163 | 2500 | 0.3046 | 0.2877 | 0.8930 | - |
| 0.4330 | 2600 | 0.2857 | - | - | - |
| 0.4496 | 2700 | 0.285 | - | - | - |
| 0.4663 | 2800 | 0.2957 | - | - | - |
| 0.4829 | 2900 | 0.2965 | - | - | - |
| 0.4996 | 3000 | 0.2824 | 0.2842 | 0.8998 | - |
| 0.5162 | 3100 | 0.3019 | - | - | - |
| 0.5329 | 3200 | 0.2841 | - | - | - |
| 0.5495 | 3300 | 0.2981 | - | - | - |
| 0.5662 | 3400 | 0.2878 | - | - | - |
| 0.5828 | 3500 | 0.278 | 0.2803 | 0.9061 | - |
| 0.5995 | 3600 | 0.2841 | - | - | - |
| 0.6162 | 3700 | 0.2794 | - | - | - |
| 0.6328 | 3800 | 0.2808 | - | - | - |
| 0.6495 | 3900 | 0.27 | - | - | - |
| 0.6661 | 4000 | 0.2719 | 0.2697 | 0.9091 | - |
| 0.6828 | 4100 | 0.2792 | - | - | - |
| 0.6994 | 4200 | 0.2669 | - | - | - |
| 0.7161 | 4300 | 0.2696 | - | - | - |
| 0.7327 | 4400 | 0.2642 | - | - | - |
| 0.7494 | 4500 | 0.2684 | 0.2591 | 0.9140 | - |
| 0.7660 | 4600 | 0.2593 | - | - | - |
| 0.7827 | 4700 | 0.2756 | - | - | - |
| 0.7993 | 4800 | 0.2584 | - | - | - |
| 0.8160 | 4900 | 0.2525 | - | - | - |
| 0.8326 | 5000 | 0.267 | 0.2540 | 0.9168 | - |
| 0.8493 | 5100 | 0.2612 | - | - | - |
| 0.8659 | 5200 | 0.2607 | - | - | - |
| 0.8826 | 5300 | 0.2565 | - | - | - |
| 0.8993 | 5400 | 0.2432 | - | - | - |
| 0.9159 | 5500 | 0.2568 | 0.2489 | 0.9198 | - |
| 0.9326 | 5600 | 0.2572 | - | - | - |
| 0.9492 | 5700 | 0.2658 | - | - | - |
| 0.9659 | 5800 | 0.2568 | - | - | - |
| 0.9825 | 5900 | 0.2539 | - | - | - |
| 0.9992 | 6000 | 0.2458 | 0.2503 | 0.9203 | - |
| -1 | -1 | - | - | - | 0.9203 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.069 kWh
- **Carbon Emitted**: 0.027 kg of CO2
- **Hours Used**: 0.214 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.5.0.dev0
- Transformers: 4.49.0.dev0
- PyTorch: 2.5.0+cu121
- Accelerate: 1.3.0
- Datasets: 2.20.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |