tomaarsen HF staff commited on
Commit
fdb2c71
·
verified ·
1 Parent(s): 79136a6

Add auto-generated README

Browse files
Files changed (1) hide show
  1. README.md +482 -174
README.md CHANGED
@@ -1,200 +1,508 @@
1
  ---
2
- library_name: transformers
 
3
  tags:
 
4
  - cross-encoder
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
- # Model Card for Model ID
8
-
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
 
 
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
-
19
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
-
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
- - **Language(s) (NLP):** [More Information Needed]
26
- - **License:** [More Information Needed]
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
-
29
- ### Model Sources [optional]
30
-
31
- <!-- Provide the basic links for the model. -->
32
-
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
-
37
- ## Uses
38
-
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
-
41
- ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
-
47
- ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  ### Out-of-Scope Use
54
 
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
-
59
- ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
-
65
- ### Recommendations
66
-
67
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
-
69
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
-
71
- ## How to Get Started with the Model
72
-
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
 
104
  ## Evaluation
105
 
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
 
142
- ## Environmental Impact
143
 
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
145
 
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
 
 
 
 
 
 
 
 
147
 
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
 
154
- ## Technical Specifications [optional]
 
155
 
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
 
194
- ## Model Card Authors [optional]
 
195
 
196
- [More Information Needed]
197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
  ## Model Card Contact
199
 
200
- [More Information Needed]
 
 
1
  ---
2
+ language:
3
+ - en
4
  tags:
5
+ - sentence-transformers
6
  - cross-encoder
7
+ - text-classification
8
+ - generated_from_trainer
9
+ - dataset_size:404290
10
+ - loss:BinaryCrossEntropyLoss
11
+ base_model: distilbert/distilroberta-base
12
+ datasets:
13
+ - sentence-transformers/quora-duplicates
14
+ pipeline_tag: text-classification
15
+ library_name: sentence-transformers
16
+ metrics:
17
+ - accuracy
18
+ - accuracy_threshold
19
+ - f1
20
+ - f1_threshold
21
+ - precision
22
+ - recall
23
+ - average_precision
24
+ co2_eq_emissions:
25
+ emissions: 26.889480385249758
26
+ energy_consumed: 0.06917762292257246
27
+ source: codecarbon
28
+ training_type: fine-tuning
29
+ on_cloud: false
30
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
31
+ ram_total_size: 31.777088165283203
32
+ hours_used: 0.214
33
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
34
+ model-index:
35
+ - name: CrossEncoder based on distilbert/distilroberta-base
36
+ results:
37
+ - task:
38
+ type: cross-encoder-classification
39
+ name: Cross Encoder Classification
40
+ dataset:
41
+ name: quora duplicates dev
42
+ type: quora-duplicates-dev
43
+ metrics:
44
+ - type: accuracy
45
+ value: 0.8938
46
+ name: Accuracy
47
+ - type: accuracy_threshold
48
+ value: 0.5088549852371216
49
+ name: Accuracy Threshold
50
+ - type: f1
51
+ value: 0.8612281373675477
52
+ name: F1
53
+ - type: f1_threshold
54
+ value: 0.3856155276298523
55
+ name: F1 Threshold
56
+ - type: precision
57
+ value: 0.8182920912178554
58
+ name: Precision
59
+ - type: recall
60
+ value: 0.908919428725411
61
+ name: Recall
62
+ - type: average_precision
63
+ value: 0.920292628179356
64
+ name: Average Precision
65
+ - task:
66
+ type: cross-encoder-classification
67
+ name: Cross Encoder Classification
68
+ dataset:
69
+ name: quora duplicates test
70
+ type: quora-duplicates-test
71
+ metrics:
72
+ - type: accuracy
73
+ value: 0.8938
74
+ name: Accuracy
75
+ - type: accuracy_threshold
76
+ value: 0.5091445446014404
77
+ name: Accuracy Threshold
78
+ - type: f1
79
+ value: 0.8612281373675477
80
+ name: F1
81
+ - type: f1_threshold
82
+ value: 0.38580775260925293
83
+ name: F1 Threshold
84
+ - type: precision
85
+ value: 0.8182920912178554
86
+ name: Precision
87
+ - type: recall
88
+ value: 0.908919428725411
89
+ name: Recall
90
+ - type: average_precision
91
+ value: 0.92029239602284
92
+ name: Average Precision
93
  ---
94
 
95
+ # CrossEncoder based on distilbert/distilroberta-base
 
 
 
96
 
97
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
98
 
99
  ## Model Details
100
 
101
  ### Model Description
102
+ - **Model Type:** Cross Encoder
103
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
104
+ - **Maximum Sequence Length:** 514 tokens
105
+ - **Training Dataset:**
106
+ - [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
107
+ - **Language:** en
108
+ <!-- - **License:** Unknown -->
109
+
110
+ ### Model Sources
111
+
112
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
113
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
114
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
115
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
116
+
117
+ ## Usage
118
+
119
+ ### Direct Usage (Sentence Transformers)
120
+
121
+ First install the Sentence Transformers library:
122
+
123
+ ```bash
124
+ pip install -U sentence-transformers
125
+ ```
126
+
127
+ Then you can load this model and run inference.
128
+ ```python
129
+ from sentence_transformers import CrossEncoder
130
+
131
+ # Download from the 🤗 Hub
132
+ model = CrossEncoder("sentence_transformers_model_id")
133
+ # Get scores for pairs...
134
+ pairs = [
135
+ ['What is the step by step guide to invest in share market in india?', 'What is the step by step guide to invest in share market?'],
136
+ ['What is the story of Kohinoor (Koh-i-Noor) Diamond?', 'What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?'],
137
+ ['How can I increase the speed of my internet connection while using a VPN?', 'How can Internet speed be increased by hacking through DNS?'],
138
+ ['Why am I mentally very lonely? How can I solve it?', 'Find the remainder when [math]23^{24}[/math] is divided by 24,23?'],
139
+ ['Which one dissolve in water quikly sugar, salt, methane and carbon di oxide?', 'Which fish would survive in salt water?'],
140
+ ]
141
+ scores = model.predict(pairs)
142
+ print(scores.shape)
143
+ # [5]
144
+
145
+ # ... or rank different texts based on similarity to a single text
146
+ ranks = model.rank(
147
+ 'What is the step by step guide to invest in share market in india?',
148
+ [
149
+ 'What is the step by step guide to invest in share market?',
150
+ 'What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?',
151
+ 'How can Internet speed be increased by hacking through DNS?',
152
+ 'Find the remainder when [math]23^{24}[/math] is divided by 24,23?',
153
+ 'Which fish would survive in salt water?',
154
+ ]
155
+ )
156
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
157
+ ```
158
+
159
+ <!--
160
+ ### Direct Usage (Transformers)
161
+
162
+ <details><summary>Click to see the direct usage in Transformers</summary>
163
+
164
+ </details>
165
+ -->
166
+
167
+ <!--
168
+ ### Downstream Usage (Sentence Transformers)
169
+
170
+ You can finetune this model on your own dataset.
171
+
172
+ <details><summary>Click to expand</summary>
173
+
174
+ </details>
175
+ -->
176
+
177
+ <!--
178
  ### Out-of-Scope Use
179
 
180
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
181
+ -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
 
183
  ## Evaluation
184
 
185
+ ### Metrics
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
 
187
+ #### Cross Encoder Classification
188
 
189
+ * Datasets: `quora-duplicates-dev` and `quora-duplicates-test`
190
+ * Evaluated with [<code>CEClassificationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CEClassificationEvaluator)
191
 
192
+ | Metric | quora-duplicates-dev | quora-duplicates-test |
193
+ |:----------------------|:---------------------|:----------------------|
194
+ | accuracy | 0.8938 | 0.8938 |
195
+ | accuracy_threshold | 0.5089 | 0.5091 |
196
+ | f1 | 0.8612 | 0.8612 |
197
+ | f1_threshold | 0.3856 | 0.3858 |
198
+ | precision | 0.8183 | 0.8183 |
199
+ | recall | 0.9089 | 0.9089 |
200
+ | **average_precision** | **0.9203** | **0.9203** |
201
 
202
+ <!--
203
+ ## Bias, Risks and Limitations
 
 
 
204
 
205
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
206
+ -->
207
 
208
+ <!--
209
+ ### Recommendations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210
 
211
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
212
+ -->
213
 
214
+ ## Training Details
215
 
216
+ ### Training Dataset
217
+
218
+ #### quora-duplicates
219
+
220
+ * Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
221
+ * Size: 404,290 training samples
222
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
223
+ * Approximate statistics based on the first 1000 samples:
224
+ | | sentence1 | sentence2 | label |
225
+ |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------|
226
+ | type | string | string | int |
227
+ | details | <ul><li>min: 1 characters</li><li>mean: 59.15 characters</li><li>max: 354 characters</li></ul> | <ul><li>min: 6 characters</li><li>mean: 60.74 characters</li><li>max: 399 characters</li></ul> | <ul><li>0: ~64.20%</li><li>1: ~35.80%</li></ul> |
228
+ * Samples:
229
+ | sentence1 | sentence2 | label |
230
+ |:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:---------------|
231
+ | <code>What are the features of the Indian caste system?</code> | <code>What triggers you the most when you play video games?</code> | <code>0</code> |
232
+ | <code>What is the best place to learn Mandarin Chinese in Singapore?</code> | <code>What is the best place in Singapore for durian in December?</code> | <code>0</code> |
233
+ | <code>What will be Hillary Clinton's India policy if she wins the election?</code> | <code>How would the bilateral relationship between India and the USA be under Hillary Clinton's presidency?</code> | <code>1</code> |
234
+ * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#binarycrossentropyloss)
235
+
236
+ ### Evaluation Dataset
237
+
238
+ #### quora-duplicates
239
+
240
+ * Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
241
+ * Size: 404,290 evaluation samples
242
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
243
+ * Approximate statistics based on the first 1000 samples:
244
+ | | sentence1 | sentence2 | label |
245
+ |:--------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:------------------------------------------------|
246
+ | type | string | string | int |
247
+ | details | <ul><li>min: 11 characters</li><li>mean: 57.9 characters</li><li>max: 244 characters</li></ul> | <ul><li>min: 12 characters</li><li>mean: 59.33 characters</li><li>max: 221 characters</li></ul> | <ul><li>0: ~62.00%</li><li>1: ~38.00%</li></ul> |
248
+ * Samples:
249
+ | sentence1 | sentence2 | label |
250
+ |:---------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:---------------|
251
+ | <code>What is the step by step guide to invest in share market in india?</code> | <code>What is the step by step guide to invest in share market?</code> | <code>0</code> |
252
+ | <code>What is the story of Kohinoor (Koh-i-Noor) Diamond?</code> | <code>What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?</code> | <code>0</code> |
253
+ | <code>How can I increase the speed of my internet connection while using a VPN?</code> | <code>How can Internet speed be increased by hacking through DNS?</code> | <code>0</code> |
254
+ * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#binarycrossentropyloss)
255
+
256
+ ### Training Hyperparameters
257
+ #### Non-Default Hyperparameters
258
+
259
+ - `eval_strategy`: steps
260
+ - `per_device_train_batch_size`: 64
261
+ - `per_device_eval_batch_size`: 64
262
+ - `num_train_epochs`: 1
263
+ - `warmup_ratio`: 0.1
264
+ - `bf16`: True
265
+
266
+ #### All Hyperparameters
267
+ <details><summary>Click to expand</summary>
268
+
269
+ - `overwrite_output_dir`: False
270
+ - `do_predict`: False
271
+ - `eval_strategy`: steps
272
+ - `prediction_loss_only`: True
273
+ - `per_device_train_batch_size`: 64
274
+ - `per_device_eval_batch_size`: 64
275
+ - `per_gpu_train_batch_size`: None
276
+ - `per_gpu_eval_batch_size`: None
277
+ - `gradient_accumulation_steps`: 1
278
+ - `eval_accumulation_steps`: None
279
+ - `torch_empty_cache_steps`: None
280
+ - `learning_rate`: 5e-05
281
+ - `weight_decay`: 0.0
282
+ - `adam_beta1`: 0.9
283
+ - `adam_beta2`: 0.999
284
+ - `adam_epsilon`: 1e-08
285
+ - `max_grad_norm`: 1.0
286
+ - `num_train_epochs`: 1
287
+ - `max_steps`: -1
288
+ - `lr_scheduler_type`: linear
289
+ - `lr_scheduler_kwargs`: {}
290
+ - `warmup_ratio`: 0.1
291
+ - `warmup_steps`: 0
292
+ - `log_level`: passive
293
+ - `log_level_replica`: warning
294
+ - `log_on_each_node`: True
295
+ - `logging_nan_inf_filter`: True
296
+ - `save_safetensors`: True
297
+ - `save_on_each_node`: False
298
+ - `save_only_model`: False
299
+ - `restore_callback_states_from_checkpoint`: False
300
+ - `no_cuda`: False
301
+ - `use_cpu`: False
302
+ - `use_mps_device`: False
303
+ - `seed`: 42
304
+ - `data_seed`: None
305
+ - `jit_mode_eval`: False
306
+ - `use_ipex`: False
307
+ - `bf16`: True
308
+ - `fp16`: False
309
+ - `fp16_opt_level`: O1
310
+ - `half_precision_backend`: auto
311
+ - `bf16_full_eval`: False
312
+ - `fp16_full_eval`: False
313
+ - `tf32`: None
314
+ - `local_rank`: 0
315
+ - `ddp_backend`: None
316
+ - `tpu_num_cores`: None
317
+ - `tpu_metrics_debug`: False
318
+ - `debug`: []
319
+ - `dataloader_drop_last`: False
320
+ - `dataloader_num_workers`: 0
321
+ - `dataloader_prefetch_factor`: None
322
+ - `past_index`: -1
323
+ - `disable_tqdm`: False
324
+ - `remove_unused_columns`: True
325
+ - `label_names`: None
326
+ - `load_best_model_at_end`: False
327
+ - `ignore_data_skip`: False
328
+ - `fsdp`: []
329
+ - `fsdp_min_num_params`: 0
330
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
331
+ - `fsdp_transformer_layer_cls_to_wrap`: None
332
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
333
+ - `deepspeed`: None
334
+ - `label_smoothing_factor`: 0.0
335
+ - `optim`: adamw_torch
336
+ - `optim_args`: None
337
+ - `adafactor`: False
338
+ - `group_by_length`: False
339
+ - `length_column_name`: length
340
+ - `ddp_find_unused_parameters`: None
341
+ - `ddp_bucket_cap_mb`: None
342
+ - `ddp_broadcast_buffers`: False
343
+ - `dataloader_pin_memory`: True
344
+ - `dataloader_persistent_workers`: False
345
+ - `skip_memory_metrics`: True
346
+ - `use_legacy_prediction_loop`: False
347
+ - `push_to_hub`: False
348
+ - `resume_from_checkpoint`: None
349
+ - `hub_model_id`: None
350
+ - `hub_strategy`: every_save
351
+ - `hub_private_repo`: None
352
+ - `hub_always_push`: False
353
+ - `gradient_checkpointing`: False
354
+ - `gradient_checkpointing_kwargs`: None
355
+ - `include_inputs_for_metrics`: False
356
+ - `include_for_metrics`: []
357
+ - `eval_do_concat_batches`: True
358
+ - `fp16_backend`: auto
359
+ - `push_to_hub_model_id`: None
360
+ - `push_to_hub_organization`: None
361
+ - `mp_parameters`:
362
+ - `auto_find_batch_size`: False
363
+ - `full_determinism`: False
364
+ - `torchdynamo`: None
365
+ - `ray_scope`: last
366
+ - `ddp_timeout`: 1800
367
+ - `torch_compile`: False
368
+ - `torch_compile_backend`: None
369
+ - `torch_compile_mode`: None
370
+ - `dispatch_batches`: None
371
+ - `split_batches`: None
372
+ - `include_tokens_per_second`: False
373
+ - `include_num_input_tokens_seen`: False
374
+ - `neftune_noise_alpha`: None
375
+ - `optim_target_modules`: None
376
+ - `batch_eval_metrics`: False
377
+ - `eval_on_start`: False
378
+ - `use_liger_kernel`: False
379
+ - `eval_use_gather_object`: False
380
+ - `average_tokens_across_devices`: False
381
+ - `prompts`: None
382
+ - `batch_sampler`: batch_sampler
383
+ - `multi_dataset_batch_sampler`: proportional
384
+
385
+ </details>
386
+
387
+ ### Training Logs
388
+ | Epoch | Step | Training Loss | Validation Loss | quora-duplicates-dev_average_precision | quora-duplicates-test_average_precision |
389
+ |:------:|:----:|:-------------:|:---------------:|:--------------------------------------:|:---------------------------------------:|
390
+ | -1 | -1 | - | - | 0.3711 | - |
391
+ | 0.0167 | 100 | 0.6574 | - | - | - |
392
+ | 0.0333 | 200 | 0.4804 | - | - | - |
393
+ | 0.0500 | 300 | 0.4406 | - | - | - |
394
+ | 0.0666 | 400 | 0.4208 | - | - | - |
395
+ | 0.0833 | 500 | 0.3929 | 0.3958 | 0.8210 | - |
396
+ | 0.0999 | 600 | 0.3986 | - | - | - |
397
+ | 0.1166 | 700 | 0.3743 | - | - | - |
398
+ | 0.1332 | 800 | 0.3938 | - | - | - |
399
+ | 0.1499 | 900 | 0.3602 | - | - | - |
400
+ | 0.1665 | 1000 | 0.3714 | 0.3437 | 0.8565 | - |
401
+ | 0.1832 | 1100 | 0.3486 | - | - | - |
402
+ | 0.1998 | 1200 | 0.3479 | - | - | - |
403
+ | 0.2165 | 1300 | 0.3417 | - | - | - |
404
+ | 0.2331 | 1400 | 0.3425 | - | - | - |
405
+ | 0.2498 | 1500 | 0.3353 | 0.3264 | 0.8742 | - |
406
+ | 0.2664 | 1600 | 0.3335 | - | - | - |
407
+ | 0.2831 | 1700 | 0.3274 | - | - | - |
408
+ | 0.2998 | 1800 | 0.3284 | - | - | - |
409
+ | 0.3164 | 1900 | 0.3118 | - | - | - |
410
+ | 0.3331 | 2000 | 0.3073 | 0.3282 | 0.8826 | - |
411
+ | 0.3497 | 2100 | 0.3233 | - | - | - |
412
+ | 0.3664 | 2200 | 0.3072 | - | - | - |
413
+ | 0.3830 | 2300 | 0.314 | - | - | - |
414
+ | 0.3997 | 2400 | 0.3065 | - | - | - |
415
+ | 0.4163 | 2500 | 0.3046 | 0.2877 | 0.8930 | - |
416
+ | 0.4330 | 2600 | 0.2857 | - | - | - |
417
+ | 0.4496 | 2700 | 0.285 | - | - | - |
418
+ | 0.4663 | 2800 | 0.2957 | - | - | - |
419
+ | 0.4829 | 2900 | 0.2965 | - | - | - |
420
+ | 0.4996 | 3000 | 0.2824 | 0.2842 | 0.8998 | - |
421
+ | 0.5162 | 3100 | 0.3019 | - | - | - |
422
+ | 0.5329 | 3200 | 0.2841 | - | - | - |
423
+ | 0.5495 | 3300 | 0.2981 | - | - | - |
424
+ | 0.5662 | 3400 | 0.2878 | - | - | - |
425
+ | 0.5828 | 3500 | 0.278 | 0.2803 | 0.9061 | - |
426
+ | 0.5995 | 3600 | 0.2841 | - | - | - |
427
+ | 0.6162 | 3700 | 0.2794 | - | - | - |
428
+ | 0.6328 | 3800 | 0.2808 | - | - | - |
429
+ | 0.6495 | 3900 | 0.27 | - | - | - |
430
+ | 0.6661 | 4000 | 0.2719 | 0.2697 | 0.9091 | - |
431
+ | 0.6828 | 4100 | 0.2792 | - | - | - |
432
+ | 0.6994 | 4200 | 0.2669 | - | - | - |
433
+ | 0.7161 | 4300 | 0.2696 | - | - | - |
434
+ | 0.7327 | 4400 | 0.2642 | - | - | - |
435
+ | 0.7494 | 4500 | 0.2684 | 0.2591 | 0.9140 | - |
436
+ | 0.7660 | 4600 | 0.2593 | - | - | - |
437
+ | 0.7827 | 4700 | 0.2756 | - | - | - |
438
+ | 0.7993 | 4800 | 0.2584 | - | - | - |
439
+ | 0.8160 | 4900 | 0.2525 | - | - | - |
440
+ | 0.8326 | 5000 | 0.267 | 0.2540 | 0.9168 | - |
441
+ | 0.8493 | 5100 | 0.2612 | - | - | - |
442
+ | 0.8659 | 5200 | 0.2607 | - | - | - |
443
+ | 0.8826 | 5300 | 0.2565 | - | - | - |
444
+ | 0.8993 | 5400 | 0.2432 | - | - | - |
445
+ | 0.9159 | 5500 | 0.2568 | 0.2489 | 0.9198 | - |
446
+ | 0.9326 | 5600 | 0.2572 | - | - | - |
447
+ | 0.9492 | 5700 | 0.2658 | - | - | - |
448
+ | 0.9659 | 5800 | 0.2568 | - | - | - |
449
+ | 0.9825 | 5900 | 0.2539 | - | - | - |
450
+ | 0.9992 | 6000 | 0.2458 | 0.2503 | 0.9203 | - |
451
+ | -1 | -1 | - | - | - | 0.9203 |
452
+
453
+
454
+ ### Environmental Impact
455
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
456
+ - **Energy Consumed**: 0.069 kWh
457
+ - **Carbon Emitted**: 0.027 kg of CO2
458
+ - **Hours Used**: 0.214 hours
459
+
460
+ ### Training Hardware
461
+ - **On Cloud**: No
462
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
463
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
464
+ - **RAM Size**: 31.78 GB
465
+
466
+ ### Framework Versions
467
+ - Python: 3.11.6
468
+ - Sentence Transformers: 3.5.0.dev0
469
+ - Transformers: 4.49.0.dev0
470
+ - PyTorch: 2.5.0+cu121
471
+ - Accelerate: 1.3.0
472
+ - Datasets: 2.20.0
473
+ - Tokenizers: 0.21.0
474
+
475
+ ## Citation
476
+
477
+ ### BibTeX
478
+
479
+ #### Sentence Transformers
480
+ ```bibtex
481
+ @inproceedings{reimers-2019-sentence-bert,
482
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
483
+ author = "Reimers, Nils and Gurevych, Iryna",
484
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
485
+ month = "11",
486
+ year = "2019",
487
+ publisher = "Association for Computational Linguistics",
488
+ url = "https://arxiv.org/abs/1908.10084",
489
+ }
490
+ ```
491
+
492
+ <!--
493
+ ## Glossary
494
+
495
+ *Clearly define terms in order to be accessible across audiences.*
496
+ -->
497
+
498
+ <!--
499
+ ## Model Card Authors
500
+
501
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
502
+ -->
503
+
504
+ <!--
505
  ## Model Card Contact
506
 
507
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
508
+ -->