tmnam20's picture
Upload README.md with huggingface_hub
d248e92 verified
---
language:
- en
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
model-index:
- name: mdeberta-v3-base-qnli-10
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/QNLI
type: tmnam20/VieGLUE
config: qnli
split: validation
args: qnli
metrics:
- name: Accuracy
type: accuracy
value: 0.8984074684239429
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mdeberta-v3-base-qnli-10
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2859
- Accuracy: 0.8984
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3968 | 0.15 | 500 | 0.3264 | 0.8623 |
| 0.3826 | 0.31 | 1000 | 0.2996 | 0.8774 |
| 0.3478 | 0.46 | 1500 | 0.2894 | 0.8845 |
| 0.2959 | 0.61 | 2000 | 0.2745 | 0.8883 |
| 0.3228 | 0.76 | 2500 | 0.2640 | 0.8905 |
| 0.2899 | 0.92 | 3000 | 0.2723 | 0.8925 |
| 0.2269 | 1.07 | 3500 | 0.2850 | 0.8935 |
| 0.2614 | 1.22 | 4000 | 0.2607 | 0.8984 |
| 0.2508 | 1.37 | 4500 | 0.2831 | 0.8878 |
| 0.2563 | 1.53 | 5000 | 0.2556 | 0.8960 |
| 0.2485 | 1.68 | 5500 | 0.2618 | 0.9019 |
| 0.2373 | 1.83 | 6000 | 0.2600 | 0.8953 |
| 0.2361 | 1.99 | 6500 | 0.2545 | 0.9023 |
| 0.162 | 2.14 | 7000 | 0.3093 | 0.8997 |
| 0.2115 | 2.29 | 7500 | 0.2685 | 0.9010 |
| 0.176 | 2.44 | 8000 | 0.2966 | 0.8982 |
| 0.2047 | 2.6 | 8500 | 0.2767 | 0.8982 |
| 0.1831 | 2.75 | 9000 | 0.2918 | 0.8968 |
| 0.1818 | 2.9 | 9500 | 0.2818 | 0.8979 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.2.0.dev20231203+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0