|
import json |
|
from pathlib import Path |
|
|
|
from codecarbon import EmissionsTracker |
|
from datasets import load_dataset |
|
from sklearn.metrics import accuracy_score |
|
|
|
from model import FastModel, save_pipeline |
|
|
|
dataset = load_dataset("rfcx/frugalai") |
|
train_dataset = dataset["train"] |
|
test_dataset = dataset["test"] |
|
tracker = EmissionsTracker(allow_multiple_runs=True) |
|
with open("../config.json", "r") as file: |
|
config = json.load(file) |
|
model = FastModel( |
|
config["audio_processing_params"], |
|
config["features_params"], |
|
config["lgbm_params"], |
|
) |
|
model.fit(dataset["train"]) |
|
|
|
|
|
tracker.start() |
|
tracker.start_task("inference") |
|
true_label = dataset["test"]["label"] |
|
predictions = model.predict(dataset["test"]) |
|
|
|
emissions_data = tracker.stop_task() |
|
|
|
print(accuracy_score(true_label, predictions)) |
|
print("energy_consumed_wh", emissions_data.energy_consumed * 1000) |
|
print("emissions_gco2eq", emissions_data.emissions * 1000) |
|
|
|
save_pipeline(model, Path("../")) |