import json from pathlib import Path from codecarbon import EmissionsTracker from datasets import load_dataset from sklearn.metrics import accuracy_score from model import FastModel, save_pipeline dataset = load_dataset("rfcx/frugalai") train_dataset = dataset["train"] test_dataset = dataset["test"] tracker = EmissionsTracker(allow_multiple_runs=True) with open("../config.json", "r") as file: config = json.load(file) model = FastModel( config["audio_processing_params"], config["features_params"], config["lgbm_params"], ) model.fit(dataset["train"]) # INFERENCE tracker.start() tracker.start_task("inference") true_label = dataset["test"]["label"] predictions = model.predict(dataset["test"]) emissions_data = tracker.stop_task() print(accuracy_score(true_label, predictions)) print("energy_consumed_wh", emissions_data.energy_consumed * 1000) print("emissions_gco2eq", emissions_data.emissions * 1000) save_pipeline(model, Path("../"))