|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
base_model: |
|
- stepfun-ai/step3 |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [stepfun-ai/step3](https://huggingface.co/stepfun-ai/step3). |
|
|
|
Note: if you want the model version that follows transformers' naming, see the model without "-vllm" suffix. |
|
|
|
### Example usage: |
|
|
|
- vLLM |
|
|
|
```bash |
|
vllm serve tiny-random/step3-vllm --trust-remote-code |
|
``` |
|
|
|
- Transformers |
|
|
|
```python |
|
# ⚠️: it's more convenient to use the model without "-vllm" suffix, |
|
# which follows transformers' naming. Here "key_mapping" is a workaround. |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoProcessor |
|
|
|
model_id = "tiny-random/step3-vllm" |
|
key_mapping = { |
|
"^vision_model": "model.vision_model", |
|
r"^model(?!\.(language_model|vision_model))": "model.language_model", |
|
"vit_downsampler": "model.vit_downsampler", |
|
"vit_downsampler2": "model.vit_downsampler2", |
|
"vit_large_projector": "model.vit_large_projector", |
|
} |
|
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="cuda", torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, key_mapping=key_mapping, |
|
) |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"}, |
|
{"type": "text", "text": "What's in this picture?"} |
|
] |
|
}, |
|
] |
|
inputs = processor.apply_chat_template( |
|
messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" |
|
).to(model.device) |
|
generate_ids = model.generate(**inputs, max_new_tokens=32, do_sample=False) |
|
decoded = processor.decode(generate_ids[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=False) |
|
print(decoded) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
from pathlib import Path |
|
|
|
import accelerate |
|
import torch |
|
from huggingface_hub import file_exists, hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "stepfun-ai/step3" |
|
save_folder = "/tmp/tiny-random/step3-vllm" |
|
|
|
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) |
|
processor.save_pretrained(save_folder) |
|
|
|
def rewrite_automap(filepath: str, source_model_id: str, overrides: dict = None): |
|
import json |
|
with open(filepath, 'r', encoding='utf-8') as f: |
|
config = json.load(f) |
|
for k, v in config['auto_map'].items(): |
|
v = v.split('--')[-1] |
|
config['auto_map'][k] = f'{source_model_id}--{v}' |
|
if overrides is not None: |
|
config.update(overrides) |
|
with open(filepath, 'w', encoding='utf - 8') as f: |
|
json.dump(config, f, indent=2) |
|
|
|
rewrite_automap(f'{save_folder}/processor_config.json', source_model_id) |
|
rewrite_automap(f'{save_folder}/tokenizer_config.json', source_model_id) |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
|
|
for k, v in config_json['auto_map'].items(): |
|
config_json['auto_map'][k] = f'{source_model_id}--{v}' |
|
config_json['architectures'] = ["Step3VLForConditionalGeneration"] |
|
config_json['text_config'].update({ |
|
"hidden_size": 32, |
|
"intermediate_size": 64, |
|
"num_hidden_layers": 2, |
|
"num_attention_heads": 2, |
|
"num_attention_groups": 1, |
|
"head_dim": 256, |
|
"share_q_dim": 512, |
|
"moe_layers_enum": "1", |
|
"moe_num_experts": 8, |
|
"moe_top_k": 3, |
|
"moe_intermediate_size": 64, |
|
"share_expert_dim": 64, |
|
"tie_word_embeddings": True, |
|
}) |
|
config_json['vision_config'].update({ |
|
"hidden_size": 64, |
|
"output_hidden_size": 64, |
|
"intermediate_size": 128, |
|
"num_hidden_layers": 2, |
|
"num_attention_heads": 2 |
|
}) |
|
|
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
trust_remote_code=True, |
|
) |
|
print(config) |
|
automap = config_json['auto_map'] |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) |
|
torch.set_default_dtype(torch.float32) |
|
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
model = model.cpu() # cpu is more stable for random initialization across machines |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.2) |
|
print(name, p.shape) |
|
|
|
model.save_pretrained(save_folder) |
|
|
|
import safetensors |
|
new_tensors = {} |
|
with safetensors.safe_open(f'{save_folder}/model.safetensors', framework='pt', device='cpu') as f: |
|
for k in list(f.keys()): |
|
v = f.get_tensor(k) |
|
if k.startswith('model.language_model.'): |
|
k = k.replace('model.language_model.', 'model.') |
|
new_tensors[k] = v |
|
elif k.startswith('model.vi'): |
|
k = k.replace('model.vi', 'vi') |
|
new_tensors[k] = v |
|
else: |
|
new_tensors[k] = v |
|
safetensors.torch.save_file(new_tensors, f"{save_folder}/model.safetensors") |
|
|
|
rewrite_automap( |
|
f'{save_folder}/config.json', source_model_id, |
|
overrides=dict(architectures=['Step3VLForConditionalGeneration']), |
|
) |
|
for python_file in Path(save_folder).glob('*.py'): |
|
if python_file.name.startswith('modeling_') or python_file.name.startswith('configuration_') or python_file.name.endswith('.py'): |
|
python_file.unlink() |
|
``` |
|
|
|
### Printing the model: |
|
|
|
```text |
|
Step3vForConditionalGeneration( |
|
(model): Step3vModel( |
|
(vision_model): StepCLIPVisionTransformer( |
|
(embeddings): StepCLIPVisionEmbeddings( |
|
(patch_embedding): Conv2d(3, 64, kernel_size=(14, 14), stride=(14, 14)) |
|
(position_embedding): Embedding(2705, 64) |
|
) |
|
(transformer): StepCLIPEncoder( |
|
(layers): ModuleList( |
|
(0-1): 2 x StepCLIPEncoderLayer( |
|
(layer_norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True) |
|
(layer_norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True) |
|
(self_attn): StepCLIPAttention( |
|
(qkv_proj): Linear(in_features=64, out_features=192, bias=True) |
|
(out_proj): Linear(in_features=64, out_features=64, bias=True) |
|
) |
|
(mlp): StepCLIPMLP( |
|
(fc1): Linear(in_features=64, out_features=128, bias=True) |
|
(act): QuickGELUActivation() |
|
(fc2): Linear(in_features=128, out_features=64, bias=True) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(language_model): Step3Model( |
|
(embed_tokens): Embedding(128815, 32) |
|
(layers): ModuleList( |
|
(0): Step3vDecoderLayer( |
|
(self_attn): Step3vAttention( |
|
(q_proj): Linear(in_features=32, out_features=512, bias=False) |
|
(k_proj): Linear(in_features=32, out_features=256, bias=False) |
|
(v_proj): Linear(in_features=32, out_features=256, bias=False) |
|
(o_proj): Linear(in_features=512, out_features=32, bias=False) |
|
(inter_norm): Step3vRMSNorm((512,), eps=1e-05) |
|
(wq): Linear(in_features=512, out_features=512, bias=False) |
|
) |
|
(mlp): Step3vMLP( |
|
(gate_proj): Linear(in_features=32, out_features=64, bias=False) |
|
(up_proj): Linear(in_features=32, out_features=64, bias=False) |
|
(down_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
(input_layernorm): Step3vRMSNorm((32,), eps=1e-05) |
|
(post_attention_layernorm): Step3vRMSNorm((32,), eps=1e-05) |
|
) |
|
(1): Step3vDecoderLayer( |
|
(self_attn): Step3vAttention( |
|
(q_proj): Linear(in_features=32, out_features=512, bias=False) |
|
(k_proj): Linear(in_features=32, out_features=256, bias=False) |
|
(v_proj): Linear(in_features=32, out_features=256, bias=False) |
|
(o_proj): Linear(in_features=512, out_features=32, bias=False) |
|
(inter_norm): Step3vRMSNorm((512,), eps=1e-05) |
|
(wq): Linear(in_features=512, out_features=512, bias=False) |
|
) |
|
(moe): Step3vMoEMLP( |
|
(gate): Linear(in_features=32, out_features=8, bias=False) |
|
(up_proj): MoELinear() |
|
(gate_proj): MoELinear() |
|
(down_proj): MoELinear() |
|
(act_fn): SiLU() |
|
) |
|
(share_expert): Step3vMLP( |
|
(gate_proj): Linear(in_features=32, out_features=64, bias=False) |
|
(up_proj): Linear(in_features=32, out_features=64, bias=False) |
|
(down_proj): Linear(in_features=64, out_features=32, bias=False) |
|
(act_fn): SiLU() |
|
) |
|
(input_layernorm): Step3vRMSNorm((32,), eps=1e-05) |
|
(post_attention_layernorm): Step3vRMSNorm((32,), eps=1e-05) |
|
) |
|
) |
|
(norm): Step3vRMSNorm((32,), eps=1e-05) |
|
(rotary_emb): Step3vRotaryEmbedding() |
|
) |
|
(vit_downsampler): Conv2d(64, 64, kernel_size=(2, 2), stride=(2, 2)) |
|
(vit_downsampler2): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) |
|
(vit_large_projector): Linear(in_features=128, out_features=32, bias=False) |
|
) |
|
(lm_head): Linear(in_features=32, out_features=128815, bias=False) |
|
) |
|
``` |