|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [meta-llama/Llama-4-Maverick-17B-128E-Instruct](https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct). |
|
|
|
### Example usage: |
|
|
|
```python |
|
import torch |
|
|
|
from transformers import AutoProcessor, Llama4ForConditionalGeneration |
|
|
|
model_id = "tiny-random/llama-4" |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
model = Llama4ForConditionalGeneration.from_pretrained( |
|
model_id, |
|
attn_implementation="sdpa", # flex attention / flash_attention_2 do not work, debugging... |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
url1 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" |
|
url2 = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_style_layout.png" |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "url": url1}, |
|
{"type": "image", "url": url2}, |
|
{"type": "text", "text": "Can you describe how these two images are similar, and how they differ?"}, |
|
] |
|
}, |
|
] |
|
|
|
inputs = processor.apply_chat_template( |
|
messages, |
|
add_generation_prompt=True, |
|
tokenize=True, |
|
return_dict=True, |
|
return_tensors="pt", |
|
).to(model.device) |
|
|
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=32, |
|
) |
|
|
|
response = processor.batch_decode(outputs[:, inputs["input_ids"].shape[-1]:])[0] |
|
print(response) |
|
print(outputs[0]) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
|
|
import torch |
|
|
|
from huggingface_hub import hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
Llama4ForConditionalGeneration, |
|
pipeline, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "meta-llama/Llama-4-Maverick-17B-128E-Instruct" |
|
save_folder = "/tmp/tiny-random/llama-4" |
|
|
|
processor = AutoProcessor.from_pretrained(source_model_id) |
|
processor.save_pretrained(save_folder) |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r') as f: |
|
config_json = json.load(f) |
|
config_json["text_config"]["num_hidden_layers"] = 4 # ensure to trigger no-rope & moe |
|
config_json["text_config"]["hidden_size"] = 32 |
|
config_json["text_config"]["head_dim"] = 32 # vllm requires dim >= 32 |
|
config_json["text_config"]["num_attention_heads"] = 1 |
|
config_json["text_config"]["num_key_value_heads"] = 1 |
|
config_json['text_config']["use_qk_norm"] = True |
|
config_json["text_config"]["intermediate_size"] = 64 |
|
config_json["text_config"]["intermediate_size_mlp"] = 128 |
|
config_json["text_config"]["num_local_experts"] = 8 |
|
config_json["text_config"]["tie_word_embeddings"] = True |
|
|
|
config_json["vision_config"]["num_hidden_layers"] = 2 |
|
config_json["vision_config"]["hidden_size"] = 32 |
|
config_json["vision_config"]["intermediate_size"] = 128 |
|
assert config_json["vision_config"]["intermediate_size"] == int( |
|
config_json["vision_config"]["hidden_size"] // config_json["vision_config"]["pixel_shuffle_ratio"] ** 2 |
|
) |
|
config_json["vision_config"]["num_attention_heads"] = 1 |
|
config_json["vision_config"]["projector_input_dim"] = 32 |
|
config_json["vision_config"]["projector_output_dim"] = 32 |
|
config_json["vision_config"]["vision_output_dim"] = 32 |
|
with open(f"{save_folder}/config.json", "w") as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
) |
|
print(config) |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = Llama4ForConditionalGeneration(config) |
|
torch.set_default_dtype(torch.float32) |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.5) |
|
print(name, p.shape) |
|
pass |
|
model.save_pretrained(save_folder) |
|
``` |