|
--- |
|
library_name: transformers |
|
pipeline_tag: image-text-to-text |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [google/gemma-3-27b-it](https://huggingface.co/google/gemma-3-27b-it). |
|
|
|
### Example usage: |
|
|
|
```python |
|
from transformers import pipeline |
|
model_id = "tiny-random/gemma-3" |
|
pipe = pipeline( |
|
"image-text-to-text", model=model_id, device="cuda", |
|
trust_remote_code=True, max_new_tokens=3, |
|
) |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": [{"type": "text", "text": "You are a helpful assistant."}] |
|
}, |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"}, |
|
{"type": "text", "text": "What animal is on the candy?"} |
|
] |
|
} |
|
] |
|
output = pipe(text=messages, max_new_tokens=5) |
|
print(output) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import torch |
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoProcessor, |
|
AutoTokenizer, |
|
Gemma3ForConditionalGeneration, |
|
GenerationConfig, |
|
pipeline, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "google/gemma-3-27b-it" |
|
save_folder = "/tmp/tiny-random/gemma-3" |
|
|
|
processor = AutoProcessor.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
processor.save_pretrained(save_folder) |
|
|
|
config = AutoConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
config.text_config.hidden_size = 32 |
|
config.text_config.intermediate_size = 128 |
|
config.text_config.head_dim = 32 |
|
config.text_config.num_attention_heads = 1 |
|
config.text_config.num_key_value_heads = 1 |
|
config.text_config.num_hidden_layers = 2 |
|
config.text_config.sliding_window_pattern = 2 |
|
config.vision_config.hidden_size = 32 |
|
config.vision_config.num_hidden_layers = 2 |
|
config.vision_config.num_attention_heads = 1 |
|
config.vision_config.intermediate_size = 128 |
|
model = Gemma3ForConditionalGeneration( |
|
config, |
|
).to(torch.bfloat16) |
|
for layer in model.language_model.model.layers: |
|
print(layer.is_sliding) |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.5) |
|
print(name, p.shape) |
|
model.save_pretrained(save_folder) |
|
``` |