layoutlm-funsd

This model was trained from scratch on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7189
  • Answer: {'precision': 0.7106145251396648, 'recall': 0.7861557478368356, 'f1': 0.7464788732394366, 'number': 809}
  • Header: {'precision': 0.319672131147541, 'recall': 0.3277310924369748, 'f1': 0.32365145228215775, 'number': 119}
  • Question: {'precision': 0.7786596119929453, 'recall': 0.8291079812206573, 'f1': 0.8030923146884948, 'number': 1065}
  • Overall Precision: 0.7243
  • Overall Recall: 0.7817
  • Overall F1: 0.7519
  • Overall Accuracy: 0.8021

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8213 1.0 10 1.5802 {'precision': 0.02383419689119171, 'recall': 0.02843016069221261, 'f1': 0.02593010146561443, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.20350877192982456, 'recall': 0.21784037558685446, 'f1': 0.21043083900226758, 'number': 1065} 0.1211 0.1279 0.1245 0.3954
1.3926 2.0 20 1.2004 {'precision': 0.15946348733233978, 'recall': 0.13226205191594562, 'f1': 0.14459459459459462, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5316139767054908, 'recall': 0.6, 'f1': 0.5637406263784737, 'number': 1065} 0.3974 0.3743 0.3855 0.5855
1.0495 3.0 30 0.9320 {'precision': 0.4661558109833972, 'recall': 0.4511742892459827, 'f1': 0.4585427135678392, 'number': 809} {'precision': 0.02702702702702703, 'recall': 0.008403361344537815, 'f1': 0.01282051282051282, 'number': 119} {'precision': 0.634020618556701, 'recall': 0.6929577464788732, 'f1': 0.6621803499327052, 'number': 1065} 0.5565 0.5539 0.5552 0.7115
0.8025 4.0 40 0.7743 {'precision': 0.6133333333333333, 'recall': 0.7391841779975278, 'f1': 0.6704035874439461, 'number': 809} {'precision': 0.12244897959183673, 'recall': 0.05042016806722689, 'f1': 0.07142857142857142, 'number': 119} {'precision': 0.6703483432455395, 'recall': 0.7408450704225352, 'f1': 0.7038358608385369, 'number': 1065} 0.6329 0.6989 0.6643 0.7663
0.6413 5.0 50 0.7123 {'precision': 0.6552462526766595, 'recall': 0.7564894932014833, 'f1': 0.7022375215146299, 'number': 809} {'precision': 0.24675324675324675, 'recall': 0.15966386554621848, 'f1': 0.19387755102040818, 'number': 119} {'precision': 0.6920609462710505, 'recall': 0.8103286384976526, 'f1': 0.7465397923875431, 'number': 1065} 0.6616 0.7496 0.7029 0.7852
0.5528 6.0 60 0.6853 {'precision': 0.6561844863731656, 'recall': 0.7737948084054388, 'f1': 0.7101531480431083, 'number': 809} {'precision': 0.21621621621621623, 'recall': 0.13445378151260504, 'f1': 0.16580310880829016, 'number': 119} {'precision': 0.7071729957805907, 'recall': 0.7868544600938967, 'f1': 0.7448888888888887, 'number': 1065} 0.6688 0.7426 0.7038 0.7858
0.4716 7.0 70 0.6697 {'precision': 0.6731182795698925, 'recall': 0.7737948084054388, 'f1': 0.7199539965497411, 'number': 809} {'precision': 0.25252525252525254, 'recall': 0.21008403361344538, 'f1': 0.22935779816513763, 'number': 119} {'precision': 0.7363945578231292, 'recall': 0.8131455399061033, 'f1': 0.7728692547969657, 'number': 1065} 0.6880 0.7612 0.7227 0.7954
0.4138 8.0 80 0.6751 {'precision': 0.7039911308203991, 'recall': 0.7849196538936959, 'f1': 0.7422559906487435, 'number': 809} {'precision': 0.22764227642276422, 'recall': 0.23529411764705882, 'f1': 0.23140495867768596, 'number': 119} {'precision': 0.7502131287297528, 'recall': 0.8262910798122066, 'f1': 0.7864164432529044, 'number': 1065} 0.7020 0.7742 0.7363 0.7985
0.3721 9.0 90 0.6652 {'precision': 0.710239651416122, 'recall': 0.8059332509270705, 'f1': 0.755066589461494, 'number': 809} {'precision': 0.2773109243697479, 'recall': 0.2773109243697479, 'f1': 0.2773109243697479, 'number': 119} {'precision': 0.7715289982425307, 'recall': 0.8244131455399061, 'f1': 0.7970948706309579, 'number': 1065} 0.7186 0.7842 0.75 0.8042
0.3571 10.0 100 0.6931 {'precision': 0.7142857142857143, 'recall': 0.7911001236093943, 'f1': 0.750733137829912, 'number': 809} {'precision': 0.2857142857142857, 'recall': 0.25210084033613445, 'f1': 0.26785714285714285, 'number': 119} {'precision': 0.7804444444444445, 'recall': 0.8244131455399061, 'f1': 0.8018264840182647, 'number': 1065} 0.7281 0.7767 0.7516 0.8057
0.3057 11.0 110 0.6920 {'precision': 0.7172489082969432, 'recall': 0.8121137206427689, 'f1': 0.7617391304347826, 'number': 809} {'precision': 0.3225806451612903, 'recall': 0.33613445378151263, 'f1': 0.3292181069958848, 'number': 119} {'precision': 0.7837354781054513, 'recall': 0.8234741784037559, 'f1': 0.8031135531135531, 'number': 1065} 0.7290 0.7898 0.7582 0.8040
0.2932 12.0 120 0.7032 {'precision': 0.7149220489977728, 'recall': 0.7935723114956736, 'f1': 0.7521968365553603, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.3025210084033613, 'f1': 0.3171806167400881, 'number': 119} {'precision': 0.7945454545454546, 'recall': 0.8206572769953052, 'f1': 0.8073903002309469, 'number': 1065} 0.7369 0.7787 0.7573 0.8071
0.274 13.0 130 0.7165 {'precision': 0.7197309417040358, 'recall': 0.7935723114956736, 'f1': 0.7548500881834216, 'number': 809} {'precision': 0.30708661417322836, 'recall': 0.3277310924369748, 'f1': 0.3170731707317073, 'number': 119} {'precision': 0.7790492957746479, 'recall': 0.8309859154929577, 'f1': 0.8041799182189914, 'number': 1065} 0.7267 0.7858 0.7551 0.8032
0.2608 14.0 140 0.7181 {'precision': 0.7203579418344519, 'recall': 0.796044499381953, 'f1': 0.756312389900176, 'number': 809} {'precision': 0.31451612903225806, 'recall': 0.3277310924369748, 'f1': 0.32098765432098764, 'number': 119} {'precision': 0.7802491103202847, 'recall': 0.8234741784037559, 'f1': 0.801279122887163, 'number': 1065} 0.7283 0.7827 0.7545 0.8008
0.2542 15.0 150 0.7189 {'precision': 0.7106145251396648, 'recall': 0.7861557478368356, 'f1': 0.7464788732394366, 'number': 809} {'precision': 0.319672131147541, 'recall': 0.3277310924369748, 'f1': 0.32365145228215775, 'number': 119} {'precision': 0.7786596119929453, 'recall': 0.8291079812206573, 'f1': 0.8030923146884948, 'number': 1065} 0.7243 0.7817 0.7519 0.8021

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.