thean commited on
Commit
e11c183
·
1 Parent(s): 05c0c7e

Model save

Browse files
Files changed (1) hide show
  1. README.md +0 -83
README.md DELETED
@@ -1,83 +0,0 @@
1
- ---
2
- license: apache-2.0
3
- tags:
4
- - generated_from_trainer
5
- datasets:
6
- - imagefolder
7
- metrics:
8
- - accuracy
9
- model-index:
10
- - name: swinv2-tiny-patch4-window8-256-finetuned-thai
11
- results:
12
- - task:
13
- name: Image Classification
14
- type: image-classification
15
- dataset:
16
- name: imagefolder
17
- type: imagefolder
18
- config: default
19
- split: val
20
- args: default
21
- metrics:
22
- - name: Accuracy
23
- type: accuracy
24
- value: 0.87375
25
- ---
26
-
27
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
- should probably proofread and complete it, then remove this comment. -->
29
-
30
- # swinv2-tiny-patch4-window8-256-finetuned-thai
31
-
32
- This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
33
- It achieves the following results on the evaluation set:
34
- - Loss: 0.4391
35
- - Accuracy: 0.8738
36
-
37
- ## Model description
38
-
39
- More information needed
40
-
41
- ## Intended uses & limitations
42
-
43
- More information needed
44
-
45
- ## Training and evaluation data
46
-
47
- More information needed
48
-
49
- ## Training procedure
50
-
51
- ### Training hyperparameters
52
-
53
- The following hyperparameters were used during training:
54
- - learning_rate: 5e-05
55
- - train_batch_size: 64
56
- - eval_batch_size: 64
57
- - seed: 42
58
- - gradient_accumulation_steps: 4
59
- - total_train_batch_size: 256
60
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
- - lr_scheduler_type: linear
62
- - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 7
64
-
65
- ### Training results
66
-
67
- | Training Loss | Epoch | Step | Accuracy | Validation Loss |
68
- |:-------------:|:-----:|:----:|:--------:|:---------------:|
69
- | 2.6781 | 0.99 | 47 | 0.5475 | 1.8040 |
70
- | 1.3191 | 1.99 | 94 | 0.745 | 0.9501 |
71
- | 1.078 | 2.98 | 141 | 0.7969 | 0.7767 |
72
- | 0.9125 | 3.99 | 188 | 0.6060 | 0.8406 |
73
- | 0.7527 | 4.99 | 235 | 0.5214 | 0.8575 |
74
- | 0.6852 | 5.98 | 282 | 0.4588 | 0.8656 |
75
- | 0.6233 | 6.98 | 329 | 0.4391 | 0.8738 |
76
-
77
-
78
- ### Framework versions
79
-
80
- - Transformers 4.28.1
81
- - Pytorch 2.0.0+cu118
82
- - Datasets 2.11.0
83
- - Tokenizers 0.13.3