Model save
Browse files
README.md
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
tags:
|
4 |
-
- generated_from_trainer
|
5 |
-
datasets:
|
6 |
-
- imagefolder
|
7 |
-
metrics:
|
8 |
-
- accuracy
|
9 |
-
model-index:
|
10 |
-
- name: swinv2-tiny-patch4-window8-256-finetuned-thai
|
11 |
-
results:
|
12 |
-
- task:
|
13 |
-
name: Image Classification
|
14 |
-
type: image-classification
|
15 |
-
dataset:
|
16 |
-
name: imagefolder
|
17 |
-
type: imagefolder
|
18 |
-
config: default
|
19 |
-
split: val
|
20 |
-
args: default
|
21 |
-
metrics:
|
22 |
-
- name: Accuracy
|
23 |
-
type: accuracy
|
24 |
-
value: 0.87375
|
25 |
-
---
|
26 |
-
|
27 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
-
should probably proofread and complete it, then remove this comment. -->
|
29 |
-
|
30 |
-
# swinv2-tiny-patch4-window8-256-finetuned-thai
|
31 |
-
|
32 |
-
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
|
33 |
-
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.4391
|
35 |
-
- Accuracy: 0.8738
|
36 |
-
|
37 |
-
## Model description
|
38 |
-
|
39 |
-
More information needed
|
40 |
-
|
41 |
-
## Intended uses & limitations
|
42 |
-
|
43 |
-
More information needed
|
44 |
-
|
45 |
-
## Training and evaluation data
|
46 |
-
|
47 |
-
More information needed
|
48 |
-
|
49 |
-
## Training procedure
|
50 |
-
|
51 |
-
### Training hyperparameters
|
52 |
-
|
53 |
-
The following hyperparameters were used during training:
|
54 |
-
- learning_rate: 5e-05
|
55 |
-
- train_batch_size: 64
|
56 |
-
- eval_batch_size: 64
|
57 |
-
- seed: 42
|
58 |
-
- gradient_accumulation_steps: 4
|
59 |
-
- total_train_batch_size: 256
|
60 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
-
- lr_scheduler_type: linear
|
62 |
-
- lr_scheduler_warmup_ratio: 0.1
|
63 |
-
- num_epochs: 7
|
64 |
-
|
65 |
-
### Training results
|
66 |
-
|
67 |
-
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
68 |
-
|:-------------:|:-----:|:----:|:--------:|:---------------:|
|
69 |
-
| 2.6781 | 0.99 | 47 | 0.5475 | 1.8040 |
|
70 |
-
| 1.3191 | 1.99 | 94 | 0.745 | 0.9501 |
|
71 |
-
| 1.078 | 2.98 | 141 | 0.7969 | 0.7767 |
|
72 |
-
| 0.9125 | 3.99 | 188 | 0.6060 | 0.8406 |
|
73 |
-
| 0.7527 | 4.99 | 235 | 0.5214 | 0.8575 |
|
74 |
-
| 0.6852 | 5.98 | 282 | 0.4588 | 0.8656 |
|
75 |
-
| 0.6233 | 6.98 | 329 | 0.4391 | 0.8738 |
|
76 |
-
|
77 |
-
|
78 |
-
### Framework versions
|
79 |
-
|
80 |
-
- Transformers 4.28.1
|
81 |
-
- Pytorch 2.0.0+cu118
|
82 |
-
- Datasets 2.11.0
|
83 |
-
- Tokenizers 0.13.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|