thean commited on
Commit
05c0c7e
·
1 Parent(s): d7a6698

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -9
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.796875
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.7767
35
- - Accuracy: 0.7969
36
 
37
  ## Model description
38
 
@@ -60,15 +60,19 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 3
64
 
65
  ### Training results
66
 
67
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 2.6781 | 0.99 | 47 | 1.8040 | 0.5475 |
70
- | 1.3191 | 1.99 | 94 | 0.9501 | 0.745 |
71
- | 1.078 | 2.98 | 141 | 0.7767 | 0.7969 |
 
 
 
 
72
 
73
 
74
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.87375
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.4391
35
+ - Accuracy: 0.8738
36
 
37
  ## Model description
38
 
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 7
64
 
65
  ### Training results
66
 
67
+ | Training Loss | Epoch | Step | Accuracy | Validation Loss |
68
+ |:-------------:|:-----:|:----:|:--------:|:---------------:|
69
+ | 2.6781 | 0.99 | 47 | 0.5475 | 1.8040 |
70
+ | 1.3191 | 1.99 | 94 | 0.745 | 0.9501 |
71
+ | 1.078 | 2.98 | 141 | 0.7969 | 0.7767 |
72
+ | 0.9125 | 3.99 | 188 | 0.6060 | 0.8406 |
73
+ | 0.7527 | 4.99 | 235 | 0.5214 | 0.8575 |
74
+ | 0.6852 | 5.98 | 282 | 0.4588 | 0.8656 |
75
+ | 0.6233 | 6.98 | 329 | 0.4391 | 0.8738 |
76
 
77
 
78
  ### Framework versions