thean commited on
Commit
304dcb7
·
1 Parent(s): e11c183

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: swinv2-tiny-patch4-window8-256-finetuned-thai
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: val
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.87375
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # swinv2-tiny-patch4-window8-256-finetuned-thai
31
+
32
+ This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.4391
35
+ - Accuracy: 0.8738
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 64
56
+ - eval_batch_size: 64
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 256
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 7
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Accuracy | Validation Loss |
68
+ |:-------------:|:-----:|:----:|:--------:|:---------------:|
69
+ | 2.6781 | 0.99 | 47 | 0.5475 | 1.8040 |
70
+ | 1.3191 | 1.99 | 94 | 0.745 | 0.9501 |
71
+ | 1.078 | 2.98 | 141 | 0.7969 | 0.7767 |
72
+ | 0.9125 | 3.99 | 188 | 0.6060 | 0.8406 |
73
+ | 0.7527 | 4.99 | 235 | 0.5214 | 0.8575 |
74
+ | 0.6852 | 5.98 | 282 | 0.4588 | 0.8656 |
75
+ | 0.6233 | 6.98 | 329 | 0.4391 | 0.8738 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.28.1
81
+ - Pytorch 2.0.0+cu118
82
+ - Datasets 2.11.0
83
+ - Tokenizers 0.13.3