|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: im-bin-tf-abstr |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# im-bin-tf-abstr |
|
|
|
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1908 |
|
- Accuracy: 0.9222 |
|
- F1: 0.9220 |
|
- Precision: 0.9267 |
|
- Recall: 0.9174 |
|
- Roc Auc: 0.9781 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 640 |
|
- eval_batch_size: 1280 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Roc Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| |
|
| No log | 1.0 | 375 | 0.2136 | 0.9124 | 0.9131 | 0.9087 | 0.9175 | 0.9733 | |
|
| 0.3086 | 2.0 | 750 | 0.1971 | 0.9195 | 0.9190 | 0.9277 | 0.9104 | 0.9770 | |
|
| 0.1917 | 3.0 | 1125 | 0.1908 | 0.9222 | 0.9220 | 0.9267 | 0.9174 | 0.9781 | |
|
| 0.1791 | 4.0 | 1500 | 0.1909 | 0.9224 | 0.9224 | 0.9247 | 0.9202 | 0.9785 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0.dev0 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.13.3 |
|
|