moshi_general / moshi /modules /transformer.py
tezuesh's picture
Upload folder using huggingface_hub
22d5f88 verified
# Copyright (c) Kyutai, all rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Transformer model, with streaming support, + CUDA Graphable.
Optimized for inference.
See `StreamingTransformer` for more information.
"""
from contextlib import ExitStack
from dataclasses import dataclass
import typing as tp
from einops import rearrange
import torch
import torch.nn as nn
from torch.nn import functional as F
from ..utils.compile import no_compile
from .gating import make_gating
from .rope import RotaryEmbedding
from .streaming import StreamingModule, StreamingContainer
class LayerNormF32(nn.LayerNorm):
def forward(self, input: torch.Tensor) -> torch.Tensor:
x_f32 = input.float()
out_f32 = super().forward(x_f32)
return out_f32.to(input.dtype)
def _rms_norm(
x: torch.Tensor,
alpha: torch.Tensor,
dtype: tp.Optional[torch.dtype],
eps: float,
):
assert x.dim() == 3, f"RMSNorm expects 3D inputs but got {x.shape}"
x_dtype = x.dtype
if dtype is not None:
x = x.to(dtype)
var = eps + torch.mean(x**2, dim=2, keepdim=True)
y = (x * (alpha.to(var) * torch.rsqrt(var))).to(x_dtype)
return y
class RMSNorm(nn.Module):
def __init__(
self,
dim: int,
eps: float = 1e-5,
dtype: tp.Optional[torch.dtype] = None,
device=None,
):
super().__init__()
self.eps = eps
self.dtype = dtype
self.alpha = nn.Parameter(
torch.full((1, 1, dim), 1.0, requires_grad=True, device=device, dtype=dtype)
)
def forward(self, x: torch.Tensor):
return _rms_norm(x, self.alpha, self.dtype, self.eps)
class LayerScale(nn.Module):
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
This rescales diagonally the residual outputs close to 0, with a learnt scale.
Args:
channels (int): Number of channels.
init (float): Initial scale.
channel_last (bool): If True, expect `[*, C]` shaped tensors, otherwise, `[*, C, T]`.
device (torch.device or str, optional): Device on which to initialize the module.
dtype (torch.dtype, optional): dtype to use to initialize the module.
"""
def __init__(
self,
channels: int,
init: float = 1e-4,
channel_last: bool = True,
device=None,
dtype=None,
):
super().__init__()
self.channel_last = channel_last
self.scale = nn.Parameter(
torch.full(
(channels,), init, requires_grad=True, device=device, dtype=dtype
)
)
def forward(self, x: torch.Tensor):
if self.channel_last:
return self.scale * x
else:
return self.scale[:, None] * x
def create_norm_fn(norm_type: str, dim: int, **kwargs) -> nn.Module:
"""Create normalization module for transformer encoder layer.
Args:
norm_type (str): Normalization method.
dim (int): Dimension of the normalized layer.
**kwargs (dict): Additional parameters for normalization layer.
Returns:
nn.Module: Normalization module.
"""
if norm_type == "layer_norm":
return nn.LayerNorm(dim, eps=1e-5, **kwargs)
elif norm_type == "layer_norm_f32":
kwargs.pop("dtype", None)
return LayerNormF32(dim, eps=1e-8, **kwargs)
elif norm_type in {"rms_norm"}:
return RMSNorm(dim, eps=1e-5, **kwargs)
elif norm_type in {"rms_norm_f32"}:
kwargs.pop("dtype", None)
return RMSNorm(dim, eps=1e-8, dtype=torch.float, **kwargs)
else:
raise ValueError(f"Unknown norm type: {norm_type}")
def create_sin_embedding(
positions: torch.Tensor,
dim: int,
max_period: float = 10000,
dtype: torch.dtype = torch.float32,
) -> torch.Tensor:
"""Create sinusoidal positional embedding, with shape `[B, T, C]`.
Args:
positions (torch.Tensor): LongTensor of positions.
dim (int): Dimension of the embedding.
max_period (float): Maximum period of the cosine/sine functions.
dtype (torch.dtype or str): dtype to use to generate the embedding.
Returns:
torch.Tensor: Sinusoidal positional embedding.
"""
# We aim for BTC format
assert dim % 2 == 0
half_dim = dim // 2
positions = positions.to(dtype)
adim = torch.arange(half_dim, device=positions.device, dtype=dtype).view(1, 1, -1)
max_period_tensor = torch.full(
[], max_period, device=positions.device, dtype=dtype
) # avoid sync point
phase = positions / (max_period_tensor ** (adim / (half_dim - 1)))
return torch.cat([torch.cos(phase), torch.sin(phase)], dim=-1)
def multi_linear(
num_linear: int,
weight: torch.Tensor,
x: torch.Tensor,
offset: int,
):
"""Utility to apply a multi linear layer to the given input. A multi linear layer
applies a different set of weight for each time step.
Args:
num_linear (int): Number of possible time steps and so number of linears.
weight (torch.Tensor): Weight tensor, with shape `[num_linear * chout, chin]`.
x (torch.Tensor): Input tensor, with shape `[B, T, C]`.
offset (int): offset for the current time step, in particular for decoding, with
time steps provided one by one.
"""
B, T, C = x.shape
ys = []
chout, chin = weight.shape
weight = weight.view(num_linear, -1, chin)
for t in range(T):
y = F.linear(x[:, t], weight[t + offset])
ys.append(y)
out = torch.stack(ys, 1)
return out
def set_attention_context(model: nn.Module, context: tp.Optional[int] = None) -> None:
"""Deactivates or changes the context span (in time steps) in a model.
Args:
model (nn.Module): model over which to look for attentions.
context (int or None): new temporary context value.
..Note:: this is not a context manager but a plain function changing the context forever.
Initially, it was a context manager, but that led to interesting bugs when using
activation checkpointing, with the context being inconsistent between the forward
and backward.
"""
for module in model.modules():
if isinstance(module, StreamingMultiheadAttention):
module.context = context
class KVCacheResult(tp.NamedTuple):
keys: torch.Tensor
values: torch.Tensor
positions: torch.Tensor
@staticmethod
def from_kv(keys: torch.Tensor, values: torch.Tensor) -> "KVCacheResult":
B, H, T, D = keys.shape
assert tuple(values.shape[:-1]) == (B, H, T)
positions = torch.arange(T, device=keys.device, dtype=torch.long)
return KVCacheResult(keys, values, positions)
class RingKVCache:
"""Efficient streaming KVCache to be compatible with Cuda Graph.
Args:
batch_size (int): Batch size.
num_heads (int): Number of heads in the attention.
dim_per_head (int): Dimension per head.
device (torch.device): Device on which to initialize the cache.
dtype (torch.dtype): dtype to use for the cache.
"""
def __init__(
self,
batch_size: int,
num_heads: int,
dim_per_head: int,
capacity: int,
device: torch.device = torch.device("cuda"),
dtype: torch.dtype = torch.bfloat16,
):
self.capacity = capacity
self.cache = torch.zeros(
(2, batch_size, num_heads, capacity, dim_per_head),
device=device,
dtype=dtype,
)
self.end_offset = torch.zeros(1, device=device, dtype=torch.long)
def reset(self):
self.end_offset.zero_()
def complete(self, k: torch.Tensor, v: torch.Tensor) -> KVCacheResult:
assert k.shape[:-1] == v.shape[:-1], (k.shape, v.shape)
B, H, T, D = k.shape
indexes = torch.arange(T, device=self.end_offset.device, dtype=self.end_offset.dtype) + self.end_offset
indexes = indexes % self.capacity
self.cache[0].index_copy_(2, indexes, k)
self.cache[1].index_copy_(2, indexes, v)
self.end_offset.add_(T)
keys = self.cache[0]
values = self.cache[1]
indexes = torch.arange(
self.capacity, device=self.end_offset.device, dtype=torch.long
)
invalid = indexes >= self.end_offset
end_index = self.end_offset % self.capacity
delta = indexes - end_index
# If last key is for step S, and capacity is C, last key was written at index S % C.
# then end_offset = S + 1, and end_index = (S + 1) % C.
# Then for index = (S % C), delta = -1, and the next code gives us:
# position(index) = (S + 1) - 1 = S, all good.
# Now the time step at end_offset is actually the oldest in the KVCache, e.g., its
# position should be (S - self.capacity + 1).
# The following code gives us:
# position(index + 1) = S + 1 + 0 - self.capacity.
positions = torch.where(
delta <= 0,
self.end_offset + delta,
self.end_offset + delta - self.capacity,
)
positions = torch.where(invalid, torch.full_like(positions, -1), positions)
return KVCacheResult(keys, values, positions)
@dataclass
class _MHAState:
kv_cache: RingKVCache
offset: torch.Tensor
offset_cpu: int
def reset(self):
self.kv_cache.reset()
self.offset.zero_()
self.offset_cpu = 0
class StreamingMultiheadAttention(StreamingModule[_MHAState]):
"""Similar to `nn.MultiheadAttention` but with support for streaming, causal evaluation.
Args:
embed_dim (int): Dimension to project to.
num_heads (int): Number of heads.
causal (bool): Causal mask applied automatically.
context (int, optional): Number of time steps the attention can access to.
When causal, can access `context` time steps into the past, and when non causal,
can access `context // 2` steps in the past, and the same in the future.
rope (`RotaryEmbedding`, optional): Rope embedding to use.
weights_per_step (int): use different weights per time step. If non zero, should correspond to the
number of possible time steps.
device (torch.device, optional): Device on which to initialize.
dtype (torch.dtype, optional): dtype to use.
"""
_fsdp_final = True
def __init__(
self,
embed_dim: int,
num_heads: int,
causal: bool = False,
context: tp.Optional[int] = None,
rope: tp.Optional[RotaryEmbedding] = None,
weights_per_step: int = 0,
device=None,
dtype=None,
):
super().__init__()
factory_kwargs = {"device": device, "dtype": dtype}
self.embed_dim = embed_dim
self.causal = causal
self.context = context
self.rope = rope
self.num_heads = num_heads
out_dim = embed_dim
out_dim = 3 * embed_dim
mult = 1
self.weights_per_step = weights_per_step
if weights_per_step:
mult = weights_per_step
in_proj = nn.Linear(embed_dim, mult * out_dim, bias=False, **factory_kwargs)
# We try to follow the default PyTorch MHA convention, to easily compare results.
self.in_proj_weight = in_proj.weight
self.in_proj_bias = in_proj.bias
self.out_proj = nn.Linear(
embed_dim, mult * embed_dim, bias=False, **factory_kwargs
)
def _init_streaming_state(self, batch_size: int) -> _MHAState:
if self.context is None:
if self.weights_per_step:
capacity = self.weights_per_step
else:
raise RuntimeError(
"Cannot create a streaming KVCache without a context to estimate capacity."
)
else:
capacity = self.context
device = self.in_proj_weight.device
# TODO: the following estimation will not work great with FSDP.
dtype = self.in_proj_weight.dtype
dim_per_head = self.embed_dim // self.num_heads
kv_cache = RingKVCache(
batch_size, self.num_heads, dim_per_head, capacity, device, dtype
)
return _MHAState(
kv_cache,
offset=torch.zeros(1, device=device, dtype=torch.long),
offset_cpu=0,
)
def _complete_kv(self, k, v) -> KVCacheResult:
state = self._streaming_state
if state is None:
return KVCacheResult.from_kv(k, v)
else:
return state.kv_cache.complete(k, v)
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
state = self._streaming_state
T = query.shape[1]
if state is None:
offset = torch.zeros(1, device=query.device, dtype=torch.long)
offset_cpu = 0
else:
assert self.causal, "Streaming only available for causal"
offset = state.offset
offset_cpu = state.offset_cpu
if self.weights_per_step:
projected = multi_linear(
self.weights_per_step, self.in_proj_weight, query, offset_cpu
)
else:
projected = nn.functional.linear(query, self.in_proj_weight)
q, k, v = rearrange(
projected, "b t (p h d) -> p b h t d", p=3, h=self.num_heads
)
if self.rope:
q, k = self.rope(q, k, offset, time_before_heads=False)
k, v, pos_k = self._complete_kv(k, v)
if self.causal:
pos_k = pos_k.view(1, -1)
pos_q = offset + torch.arange(T, device=q.device, dtype=torch.long).view(
-1, 1
)
delta = pos_q - pos_k
attn_bias = (pos_k >= 0) & (delta >= 0)
if self.context is not None:
attn_bias = attn_bias & (delta < self.context)
else:
attn_bias = None
x = F.scaled_dot_product_attention(q, k, v, attn_bias, dropout_p=0.0)
x = rearrange(x, "b h t d -> b t (h d)")
if self.weights_per_step:
x = multi_linear(self.weights_per_step, self.out_proj.weight, x, offset_cpu)
else:
x = self.out_proj(x)
if state is not None:
state.offset.add_(T)
state.offset_cpu += T
return x
@dataclass
class _LayerState:
offset_cpu: int
def reset(self):
self.offset_cpu = 0
class StreamingTransformerLayer(StreamingModule[_LayerState]):
"""TransformerLayer with Streaming / Causal support.
Args:
d_model (int): Dimension of the data.
num_heads (int): Number of heads.
dim_feedforward (int): Intermediate dimension of FF module.
causal (bool): Causal mask applied automatically.
context (int, optional): Receptive field for the causal mask, infinite if None.
custom (bool): Use custom MHA implementation, for testing / benchmarking.
rope (`RotaryEmbedding`, optional): Rope embedding to use.
norm (str): Normalization to use. Currently, only 'layer_norm' is supported.
layer_scale (float, optional): If not None, LayerScale will be used with the given value as initial scale.
gating (str): if provided, replaces FFN with special gating, like GLU, GSiGLU etc.
weights_per_step (int): use different weights per time step. If non zero, should correspond to the
number of possible time steps.
skip_self_attn: If true, skips the self attention module and the norm
device (torch.device, optional): Device on which to initialize.
dtype (torch.dtype, optional): dtype to use.
"""
_fsdp_final = True
def __init__(
self,
d_model: int,
num_heads: int,
dim_feedforward: int | list[int] = 2048,
causal: bool = False,
context: tp.Optional[int] = None,
rope: tp.Optional[RotaryEmbedding] = None,
norm: str = "layer_norm",
layer_scale: tp.Optional[float] = None,
gating: str = "none",
weights_per_step: int = 0,
activation=F.gelu,
skip_self_attn: bool = False,
device=None,
dtype=None,
):
super().__init__()
factory_kwargs = {"device": device, "dtype": dtype}
# Redefine self_attn to our streaming multi-head attention
attn_kwargs: tp.Dict[str, tp.Any] = {
"embed_dim": d_model,
"num_heads": num_heads,
}
if not skip_self_attn:
self.self_attn: StreamingMultiheadAttention = StreamingMultiheadAttention(
causal=causal,
context=context,
rope=rope,
weights_per_step=weights_per_step,
**attn_kwargs, # type: ignore
**factory_kwargs, # type: ignore
) # type: ignore
self.norm1 = create_norm_fn(norm, d_model, **factory_kwargs)
self.norm2 = create_norm_fn(norm, d_model, **factory_kwargs)
# Redefine feedforward layers to expose bias parameter
self.weights_per_step = weights_per_step
self.gating: tp.Optional[nn.Module] = None
self.linear1: tp.Optional[nn.Module] = None
self.linear2: tp.Optional[nn.Module] = None
self.activation = activation
self.skip_self_attn = skip_self_attn
if isinstance(dim_feedforward, list):
assert dim_feedforward
assert len(dim_feedforward) == weights_per_step, (
"Length of dim_feedforward must match weights_per_step,"
f" got {len(dim_feedforward)} != {weights_per_step}"
)
if gating == "none":
assert (
not weights_per_step
), "weights_per_step without gating not supported for now."
assert not isinstance(
dim_feedforward, list
), "List dim_feedforward without gating not supported for now."
self.linear1 = nn.Linear(
d_model, dim_feedforward, bias=False, **factory_kwargs
)
self.linear2 = nn.Linear(
dim_feedforward, d_model, bias=False, **factory_kwargs
)
else:
self.linear1 = None
self.linear2 = None
if weights_per_step:
if isinstance(dim_feedforward, int):
dim_feedforward = [dim_feedforward] * weights_per_step
assert isinstance(dim_feedforward, list), dim_feedforward
self.gating = nn.ModuleList(
[
make_gating(gating, d_model, dim, **factory_kwargs)
for dim in dim_feedforward
]
)
else:
assert isinstance(dim_feedforward, int)
self.gating = make_gating(
gating, d_model, dim_feedforward, **factory_kwargs
)
self.layer_scale_1: nn.Module
self.layer_scale_2: nn.Module
if layer_scale is None:
self.layer_scale_1 = nn.Identity()
self.layer_scale_2 = nn.Identity()
else:
self.layer_scale_1 = LayerScale(d_model, layer_scale, **factory_kwargs) # type: ignore
self.layer_scale_2 = LayerScale(d_model, layer_scale, **factory_kwargs) # type: ignore
def _init_streaming_state(self, batch_size: int) -> _LayerState:
return _LayerState(offset_cpu=0)
# feed forward block
def _ff_block(self, x: torch.Tensor) -> torch.Tensor:
state = self._streaming_state
offset = 0
if state is not None:
offset = state.offset_cpu
x_orig = x
x = self.norm2(x)
if self.gating is None:
assert self.linear1 is not None
assert self.linear2 is not None
update = self.linear2(self.activation(self.linear1(x)))
else:
if self.weights_per_step:
assert isinstance(self.gating, nn.ModuleList)
B, T, D = x.shape
ys = []
for t in range(T):
y = self.gating[offset + t](x[:, t : t + 1])
ys.append(y)
update = torch.cat(ys, dim=1)
else:
update = self.gating(x)
return x_orig + self.layer_scale_2(update)
def _sa_block(self, x: torch.Tensor):
if self.skip_self_attn:
return x
x_orig = x
x = self.norm1(x)
update = self.self_attn(x, x, x)
return x_orig + self.layer_scale_1(update)
def forward(self, x: torch.Tensor):
with ExitStack() as stack:
if x.device.type != 'cuda':
stack.enter_context(no_compile())
x = self._sa_block(x)
x = self._ff_block(x)
state = self._streaming_state
if state:
state.offset_cpu += x.shape[1]
return x
@dataclass
class _TransformerState:
offset: torch.Tensor
def reset(self):
self.offset.zero_()
class StreamingTransformer(StreamingModule[_TransformerState]):
"""Transformer with Streaming / Causal support.
Args:
d_model (int): Dimension of the data.
num_heads (int): Number of heads.
dim_feedforward (int): Intermediate dimension of FF module.
causal (bool): Causal mask applied automatically.
context (int, optional): Receptive field for the causal mask, infinite if None.
layer_scale (float, optional): If not None, LayerScale will be used
with the given value as initial scale.
positional_embedding (str): Positional embedding strategy (sin, rope, sin_rope, or none).
max_period (float): Maximum period of the time embedding.
positional_scale (float): Scale of positional embedding, set to 0 to deactivate.
layer_class: (subclass of `StreamingTransformerLayer): class to use
to initialize the layers, allowing further customization outside of AudioCraft.
device (torch.device, optional): Device on which to initialize.
dtype (torch.dtype, optional): dtype to use.
**kwargs: See `StreamingTransformerLayer`.
"""
def __init__(
self,
d_model: int,
num_heads: int,
num_layers: int,
dim_feedforward: int | list[int] = 2048,
causal: bool = False,
context: tp.Optional[int] = None,
positional_embedding: str = "sin",
max_period: float = 10_000,
positional_scale: float = 1.0,
betas: tp.Optional[tp.Tuple[float, float]] = None,
layer_class: tp.Type[StreamingTransformerLayer] = StreamingTransformerLayer,
device=None,
dtype=None,
**kwargs,
):
super().__init__()
assert d_model % num_heads == 0
self.positional_embedding = positional_embedding
self.max_period = max_period
self.positional_scale = positional_scale
self.betas = betas
assert positional_embedding in {"sin", "rope", "sin_rope", "none"}
self.rope: tp.Optional[RotaryEmbedding] = None
if self.positional_embedding in {"rope", "sin_rope"}:
self.rope = RotaryEmbedding(max_period=max_period)
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(
layer_class(
d_model=d_model,
num_heads=num_heads,
dim_feedforward=dim_feedforward,
causal=causal,
context=context,
rope=self.rope,
device=device,
dtype=dtype,
**kwargs,
)
)
def _init_streaming_state(self, batch_size: int) -> _TransformerState:
device = next(self.parameters()).device
return _TransformerState(offset=torch.zeros(1, device=device, dtype=torch.long))
def forward(self, x: torch.Tensor, *args, **kwargs):
B, T, C = x.shape
state = self._streaming_state
if state is None:
offset = torch.zeros(1, dtype=torch.long, device=x.device)
else:
offset = state.offset
if self.positional_embedding in {"sin", "sin_rope"}:
positions = torch.arange(T, device=x.device).view(1, -1, 1)
positions = positions + offset.view(-1, 1, 1)
pos_emb = create_sin_embedding(
positions, C, max_period=self.max_period, dtype=x.dtype
)
x = x + self.positional_scale * pos_emb
for layer in self.layers:
x = layer(x, *args, **kwargs)
if state is not None:
state.offset.add_(T)
return x
class ProjectedTransformer(StreamingContainer):
"""Transformer with optional projections of the input and output to different dimensions when needed.
Supports multiple outputs.
Args:
input_dimension (int): dimension of the input.
output_dimensions (tuple[int]): dimensions of the outputs.
d_model (int): inner dimension of the Transformer.
conv_layout (bool): If True, expects `[B, C, T]` shaped tensors, otherwise, `[B, T, C]`.
Similarly, the output will have the same layout.
"""
def __init__(
self,
input_dimension: int,
output_dimensions: tp.Tuple[int, ...],
d_model: int,
*,
conv_layout: bool = False,
**kwargs,
):
super().__init__()
self.transformer = StreamingTransformer(d_model=d_model, **kwargs)
self.input_dimension = input_dimension
self.output_dimensions = output_dimensions
self.conv_layout = conv_layout
self.input_proj = None
if d_model != input_dimension:
self.input_proj = nn.Linear(input_dimension, d_model, bias=False)
self.output_projs = nn.ModuleList()
for output_dimension in output_dimensions:
if d_model == output_dimension:
self.output_projs.append(nn.Identity())
else:
self.output_projs.append(
nn.Linear(d_model, output_dimension, bias=False)
)
def forward(self, x, *args, **kwargs):
if self.conv_layout:
x = x.transpose(1, 2)
if self.input_proj is not None:
x = self.input_proj(x)
z = self.transformer(x, *args, **kwargs)
ys = []
for output_proj in self.output_projs:
y = output_proj(z)
if self.conv_layout:
y = y.transpose(1, 2)
ys.append(y)
return ys