File size: 26,965 Bytes
22d5f88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 |
# Copyright (c) Kyutai, all rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Transformer model, with streaming support, + CUDA Graphable.
Optimized for inference.
See `StreamingTransformer` for more information.
"""
from contextlib import ExitStack
from dataclasses import dataclass
import typing as tp
from einops import rearrange
import torch
import torch.nn as nn
from torch.nn import functional as F
from ..utils.compile import no_compile
from .gating import make_gating
from .rope import RotaryEmbedding
from .streaming import StreamingModule, StreamingContainer
class LayerNormF32(nn.LayerNorm):
def forward(self, input: torch.Tensor) -> torch.Tensor:
x_f32 = input.float()
out_f32 = super().forward(x_f32)
return out_f32.to(input.dtype)
def _rms_norm(
x: torch.Tensor,
alpha: torch.Tensor,
dtype: tp.Optional[torch.dtype],
eps: float,
):
assert x.dim() == 3, f"RMSNorm expects 3D inputs but got {x.shape}"
x_dtype = x.dtype
if dtype is not None:
x = x.to(dtype)
var = eps + torch.mean(x**2, dim=2, keepdim=True)
y = (x * (alpha.to(var) * torch.rsqrt(var))).to(x_dtype)
return y
class RMSNorm(nn.Module):
def __init__(
self,
dim: int,
eps: float = 1e-5,
dtype: tp.Optional[torch.dtype] = None,
device=None,
):
super().__init__()
self.eps = eps
self.dtype = dtype
self.alpha = nn.Parameter(
torch.full((1, 1, dim), 1.0, requires_grad=True, device=device, dtype=dtype)
)
def forward(self, x: torch.Tensor):
return _rms_norm(x, self.alpha, self.dtype, self.eps)
class LayerScale(nn.Module):
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
This rescales diagonally the residual outputs close to 0, with a learnt scale.
Args:
channels (int): Number of channels.
init (float): Initial scale.
channel_last (bool): If True, expect `[*, C]` shaped tensors, otherwise, `[*, C, T]`.
device (torch.device or str, optional): Device on which to initialize the module.
dtype (torch.dtype, optional): dtype to use to initialize the module.
"""
def __init__(
self,
channels: int,
init: float = 1e-4,
channel_last: bool = True,
device=None,
dtype=None,
):
super().__init__()
self.channel_last = channel_last
self.scale = nn.Parameter(
torch.full(
(channels,), init, requires_grad=True, device=device, dtype=dtype
)
)
def forward(self, x: torch.Tensor):
if self.channel_last:
return self.scale * x
else:
return self.scale[:, None] * x
def create_norm_fn(norm_type: str, dim: int, **kwargs) -> nn.Module:
"""Create normalization module for transformer encoder layer.
Args:
norm_type (str): Normalization method.
dim (int): Dimension of the normalized layer.
**kwargs (dict): Additional parameters for normalization layer.
Returns:
nn.Module: Normalization module.
"""
if norm_type == "layer_norm":
return nn.LayerNorm(dim, eps=1e-5, **kwargs)
elif norm_type == "layer_norm_f32":
kwargs.pop("dtype", None)
return LayerNormF32(dim, eps=1e-8, **kwargs)
elif norm_type in {"rms_norm"}:
return RMSNorm(dim, eps=1e-5, **kwargs)
elif norm_type in {"rms_norm_f32"}:
kwargs.pop("dtype", None)
return RMSNorm(dim, eps=1e-8, dtype=torch.float, **kwargs)
else:
raise ValueError(f"Unknown norm type: {norm_type}")
def create_sin_embedding(
positions: torch.Tensor,
dim: int,
max_period: float = 10000,
dtype: torch.dtype = torch.float32,
) -> torch.Tensor:
"""Create sinusoidal positional embedding, with shape `[B, T, C]`.
Args:
positions (torch.Tensor): LongTensor of positions.
dim (int): Dimension of the embedding.
max_period (float): Maximum period of the cosine/sine functions.
dtype (torch.dtype or str): dtype to use to generate the embedding.
Returns:
torch.Tensor: Sinusoidal positional embedding.
"""
# We aim for BTC format
assert dim % 2 == 0
half_dim = dim // 2
positions = positions.to(dtype)
adim = torch.arange(half_dim, device=positions.device, dtype=dtype).view(1, 1, -1)
max_period_tensor = torch.full(
[], max_period, device=positions.device, dtype=dtype
) # avoid sync point
phase = positions / (max_period_tensor ** (adim / (half_dim - 1)))
return torch.cat([torch.cos(phase), torch.sin(phase)], dim=-1)
def multi_linear(
num_linear: int,
weight: torch.Tensor,
x: torch.Tensor,
offset: int,
):
"""Utility to apply a multi linear layer to the given input. A multi linear layer
applies a different set of weight for each time step.
Args:
num_linear (int): Number of possible time steps and so number of linears.
weight (torch.Tensor): Weight tensor, with shape `[num_linear * chout, chin]`.
x (torch.Tensor): Input tensor, with shape `[B, T, C]`.
offset (int): offset for the current time step, in particular for decoding, with
time steps provided one by one.
"""
B, T, C = x.shape
ys = []
chout, chin = weight.shape
weight = weight.view(num_linear, -1, chin)
for t in range(T):
y = F.linear(x[:, t], weight[t + offset])
ys.append(y)
out = torch.stack(ys, 1)
return out
def set_attention_context(model: nn.Module, context: tp.Optional[int] = None) -> None:
"""Deactivates or changes the context span (in time steps) in a model.
Args:
model (nn.Module): model over which to look for attentions.
context (int or None): new temporary context value.
..Note:: this is not a context manager but a plain function changing the context forever.
Initially, it was a context manager, but that led to interesting bugs when using
activation checkpointing, with the context being inconsistent between the forward
and backward.
"""
for module in model.modules():
if isinstance(module, StreamingMultiheadAttention):
module.context = context
class KVCacheResult(tp.NamedTuple):
keys: torch.Tensor
values: torch.Tensor
positions: torch.Tensor
@staticmethod
def from_kv(keys: torch.Tensor, values: torch.Tensor) -> "KVCacheResult":
B, H, T, D = keys.shape
assert tuple(values.shape[:-1]) == (B, H, T)
positions = torch.arange(T, device=keys.device, dtype=torch.long)
return KVCacheResult(keys, values, positions)
class RingKVCache:
"""Efficient streaming KVCache to be compatible with Cuda Graph.
Args:
batch_size (int): Batch size.
num_heads (int): Number of heads in the attention.
dim_per_head (int): Dimension per head.
device (torch.device): Device on which to initialize the cache.
dtype (torch.dtype): dtype to use for the cache.
"""
def __init__(
self,
batch_size: int,
num_heads: int,
dim_per_head: int,
capacity: int,
device: torch.device = torch.device("cuda"),
dtype: torch.dtype = torch.bfloat16,
):
self.capacity = capacity
self.cache = torch.zeros(
(2, batch_size, num_heads, capacity, dim_per_head),
device=device,
dtype=dtype,
)
self.end_offset = torch.zeros(1, device=device, dtype=torch.long)
def reset(self):
self.end_offset.zero_()
def complete(self, k: torch.Tensor, v: torch.Tensor) -> KVCacheResult:
assert k.shape[:-1] == v.shape[:-1], (k.shape, v.shape)
B, H, T, D = k.shape
indexes = torch.arange(T, device=self.end_offset.device, dtype=self.end_offset.dtype) + self.end_offset
indexes = indexes % self.capacity
self.cache[0].index_copy_(2, indexes, k)
self.cache[1].index_copy_(2, indexes, v)
self.end_offset.add_(T)
keys = self.cache[0]
values = self.cache[1]
indexes = torch.arange(
self.capacity, device=self.end_offset.device, dtype=torch.long
)
invalid = indexes >= self.end_offset
end_index = self.end_offset % self.capacity
delta = indexes - end_index
# If last key is for step S, and capacity is C, last key was written at index S % C.
# then end_offset = S + 1, and end_index = (S + 1) % C.
# Then for index = (S % C), delta = -1, and the next code gives us:
# position(index) = (S + 1) - 1 = S, all good.
# Now the time step at end_offset is actually the oldest in the KVCache, e.g., its
# position should be (S - self.capacity + 1).
# The following code gives us:
# position(index + 1) = S + 1 + 0 - self.capacity.
positions = torch.where(
delta <= 0,
self.end_offset + delta,
self.end_offset + delta - self.capacity,
)
positions = torch.where(invalid, torch.full_like(positions, -1), positions)
return KVCacheResult(keys, values, positions)
@dataclass
class _MHAState:
kv_cache: RingKVCache
offset: torch.Tensor
offset_cpu: int
def reset(self):
self.kv_cache.reset()
self.offset.zero_()
self.offset_cpu = 0
class StreamingMultiheadAttention(StreamingModule[_MHAState]):
"""Similar to `nn.MultiheadAttention` but with support for streaming, causal evaluation.
Args:
embed_dim (int): Dimension to project to.
num_heads (int): Number of heads.
causal (bool): Causal mask applied automatically.
context (int, optional): Number of time steps the attention can access to.
When causal, can access `context` time steps into the past, and when non causal,
can access `context // 2` steps in the past, and the same in the future.
rope (`RotaryEmbedding`, optional): Rope embedding to use.
weights_per_step (int): use different weights per time step. If non zero, should correspond to the
number of possible time steps.
device (torch.device, optional): Device on which to initialize.
dtype (torch.dtype, optional): dtype to use.
"""
_fsdp_final = True
def __init__(
self,
embed_dim: int,
num_heads: int,
causal: bool = False,
context: tp.Optional[int] = None,
rope: tp.Optional[RotaryEmbedding] = None,
weights_per_step: int = 0,
device=None,
dtype=None,
):
super().__init__()
factory_kwargs = {"device": device, "dtype": dtype}
self.embed_dim = embed_dim
self.causal = causal
self.context = context
self.rope = rope
self.num_heads = num_heads
out_dim = embed_dim
out_dim = 3 * embed_dim
mult = 1
self.weights_per_step = weights_per_step
if weights_per_step:
mult = weights_per_step
in_proj = nn.Linear(embed_dim, mult * out_dim, bias=False, **factory_kwargs)
# We try to follow the default PyTorch MHA convention, to easily compare results.
self.in_proj_weight = in_proj.weight
self.in_proj_bias = in_proj.bias
self.out_proj = nn.Linear(
embed_dim, mult * embed_dim, bias=False, **factory_kwargs
)
def _init_streaming_state(self, batch_size: int) -> _MHAState:
if self.context is None:
if self.weights_per_step:
capacity = self.weights_per_step
else:
raise RuntimeError(
"Cannot create a streaming KVCache without a context to estimate capacity."
)
else:
capacity = self.context
device = self.in_proj_weight.device
# TODO: the following estimation will not work great with FSDP.
dtype = self.in_proj_weight.dtype
dim_per_head = self.embed_dim // self.num_heads
kv_cache = RingKVCache(
batch_size, self.num_heads, dim_per_head, capacity, device, dtype
)
return _MHAState(
kv_cache,
offset=torch.zeros(1, device=device, dtype=torch.long),
offset_cpu=0,
)
def _complete_kv(self, k, v) -> KVCacheResult:
state = self._streaming_state
if state is None:
return KVCacheResult.from_kv(k, v)
else:
return state.kv_cache.complete(k, v)
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
state = self._streaming_state
T = query.shape[1]
if state is None:
offset = torch.zeros(1, device=query.device, dtype=torch.long)
offset_cpu = 0
else:
assert self.causal, "Streaming only available for causal"
offset = state.offset
offset_cpu = state.offset_cpu
if self.weights_per_step:
projected = multi_linear(
self.weights_per_step, self.in_proj_weight, query, offset_cpu
)
else:
projected = nn.functional.linear(query, self.in_proj_weight)
q, k, v = rearrange(
projected, "b t (p h d) -> p b h t d", p=3, h=self.num_heads
)
if self.rope:
q, k = self.rope(q, k, offset, time_before_heads=False)
k, v, pos_k = self._complete_kv(k, v)
if self.causal:
pos_k = pos_k.view(1, -1)
pos_q = offset + torch.arange(T, device=q.device, dtype=torch.long).view(
-1, 1
)
delta = pos_q - pos_k
attn_bias = (pos_k >= 0) & (delta >= 0)
if self.context is not None:
attn_bias = attn_bias & (delta < self.context)
else:
attn_bias = None
x = F.scaled_dot_product_attention(q, k, v, attn_bias, dropout_p=0.0)
x = rearrange(x, "b h t d -> b t (h d)")
if self.weights_per_step:
x = multi_linear(self.weights_per_step, self.out_proj.weight, x, offset_cpu)
else:
x = self.out_proj(x)
if state is not None:
state.offset.add_(T)
state.offset_cpu += T
return x
@dataclass
class _LayerState:
offset_cpu: int
def reset(self):
self.offset_cpu = 0
class StreamingTransformerLayer(StreamingModule[_LayerState]):
"""TransformerLayer with Streaming / Causal support.
Args:
d_model (int): Dimension of the data.
num_heads (int): Number of heads.
dim_feedforward (int): Intermediate dimension of FF module.
causal (bool): Causal mask applied automatically.
context (int, optional): Receptive field for the causal mask, infinite if None.
custom (bool): Use custom MHA implementation, for testing / benchmarking.
rope (`RotaryEmbedding`, optional): Rope embedding to use.
norm (str): Normalization to use. Currently, only 'layer_norm' is supported.
layer_scale (float, optional): If not None, LayerScale will be used with the given value as initial scale.
gating (str): if provided, replaces FFN with special gating, like GLU, GSiGLU etc.
weights_per_step (int): use different weights per time step. If non zero, should correspond to the
number of possible time steps.
skip_self_attn: If true, skips the self attention module and the norm
device (torch.device, optional): Device on which to initialize.
dtype (torch.dtype, optional): dtype to use.
"""
_fsdp_final = True
def __init__(
self,
d_model: int,
num_heads: int,
dim_feedforward: int | list[int] = 2048,
causal: bool = False,
context: tp.Optional[int] = None,
rope: tp.Optional[RotaryEmbedding] = None,
norm: str = "layer_norm",
layer_scale: tp.Optional[float] = None,
gating: str = "none",
weights_per_step: int = 0,
activation=F.gelu,
skip_self_attn: bool = False,
device=None,
dtype=None,
):
super().__init__()
factory_kwargs = {"device": device, "dtype": dtype}
# Redefine self_attn to our streaming multi-head attention
attn_kwargs: tp.Dict[str, tp.Any] = {
"embed_dim": d_model,
"num_heads": num_heads,
}
if not skip_self_attn:
self.self_attn: StreamingMultiheadAttention = StreamingMultiheadAttention(
causal=causal,
context=context,
rope=rope,
weights_per_step=weights_per_step,
**attn_kwargs, # type: ignore
**factory_kwargs, # type: ignore
) # type: ignore
self.norm1 = create_norm_fn(norm, d_model, **factory_kwargs)
self.norm2 = create_norm_fn(norm, d_model, **factory_kwargs)
# Redefine feedforward layers to expose bias parameter
self.weights_per_step = weights_per_step
self.gating: tp.Optional[nn.Module] = None
self.linear1: tp.Optional[nn.Module] = None
self.linear2: tp.Optional[nn.Module] = None
self.activation = activation
self.skip_self_attn = skip_self_attn
if isinstance(dim_feedforward, list):
assert dim_feedforward
assert len(dim_feedforward) == weights_per_step, (
"Length of dim_feedforward must match weights_per_step,"
f" got {len(dim_feedforward)} != {weights_per_step}"
)
if gating == "none":
assert (
not weights_per_step
), "weights_per_step without gating not supported for now."
assert not isinstance(
dim_feedforward, list
), "List dim_feedforward without gating not supported for now."
self.linear1 = nn.Linear(
d_model, dim_feedforward, bias=False, **factory_kwargs
)
self.linear2 = nn.Linear(
dim_feedforward, d_model, bias=False, **factory_kwargs
)
else:
self.linear1 = None
self.linear2 = None
if weights_per_step:
if isinstance(dim_feedforward, int):
dim_feedforward = [dim_feedforward] * weights_per_step
assert isinstance(dim_feedforward, list), dim_feedforward
self.gating = nn.ModuleList(
[
make_gating(gating, d_model, dim, **factory_kwargs)
for dim in dim_feedforward
]
)
else:
assert isinstance(dim_feedforward, int)
self.gating = make_gating(
gating, d_model, dim_feedforward, **factory_kwargs
)
self.layer_scale_1: nn.Module
self.layer_scale_2: nn.Module
if layer_scale is None:
self.layer_scale_1 = nn.Identity()
self.layer_scale_2 = nn.Identity()
else:
self.layer_scale_1 = LayerScale(d_model, layer_scale, **factory_kwargs) # type: ignore
self.layer_scale_2 = LayerScale(d_model, layer_scale, **factory_kwargs) # type: ignore
def _init_streaming_state(self, batch_size: int) -> _LayerState:
return _LayerState(offset_cpu=0)
# feed forward block
def _ff_block(self, x: torch.Tensor) -> torch.Tensor:
state = self._streaming_state
offset = 0
if state is not None:
offset = state.offset_cpu
x_orig = x
x = self.norm2(x)
if self.gating is None:
assert self.linear1 is not None
assert self.linear2 is not None
update = self.linear2(self.activation(self.linear1(x)))
else:
if self.weights_per_step:
assert isinstance(self.gating, nn.ModuleList)
B, T, D = x.shape
ys = []
for t in range(T):
y = self.gating[offset + t](x[:, t : t + 1])
ys.append(y)
update = torch.cat(ys, dim=1)
else:
update = self.gating(x)
return x_orig + self.layer_scale_2(update)
def _sa_block(self, x: torch.Tensor):
if self.skip_self_attn:
return x
x_orig = x
x = self.norm1(x)
update = self.self_attn(x, x, x)
return x_orig + self.layer_scale_1(update)
def forward(self, x: torch.Tensor):
with ExitStack() as stack:
if x.device.type != 'cuda':
stack.enter_context(no_compile())
x = self._sa_block(x)
x = self._ff_block(x)
state = self._streaming_state
if state:
state.offset_cpu += x.shape[1]
return x
@dataclass
class _TransformerState:
offset: torch.Tensor
def reset(self):
self.offset.zero_()
class StreamingTransformer(StreamingModule[_TransformerState]):
"""Transformer with Streaming / Causal support.
Args:
d_model (int): Dimension of the data.
num_heads (int): Number of heads.
dim_feedforward (int): Intermediate dimension of FF module.
causal (bool): Causal mask applied automatically.
context (int, optional): Receptive field for the causal mask, infinite if None.
layer_scale (float, optional): If not None, LayerScale will be used
with the given value as initial scale.
positional_embedding (str): Positional embedding strategy (sin, rope, sin_rope, or none).
max_period (float): Maximum period of the time embedding.
positional_scale (float): Scale of positional embedding, set to 0 to deactivate.
layer_class: (subclass of `StreamingTransformerLayer): class to use
to initialize the layers, allowing further customization outside of AudioCraft.
device (torch.device, optional): Device on which to initialize.
dtype (torch.dtype, optional): dtype to use.
**kwargs: See `StreamingTransformerLayer`.
"""
def __init__(
self,
d_model: int,
num_heads: int,
num_layers: int,
dim_feedforward: int | list[int] = 2048,
causal: bool = False,
context: tp.Optional[int] = None,
positional_embedding: str = "sin",
max_period: float = 10_000,
positional_scale: float = 1.0,
betas: tp.Optional[tp.Tuple[float, float]] = None,
layer_class: tp.Type[StreamingTransformerLayer] = StreamingTransformerLayer,
device=None,
dtype=None,
**kwargs,
):
super().__init__()
assert d_model % num_heads == 0
self.positional_embedding = positional_embedding
self.max_period = max_period
self.positional_scale = positional_scale
self.betas = betas
assert positional_embedding in {"sin", "rope", "sin_rope", "none"}
self.rope: tp.Optional[RotaryEmbedding] = None
if self.positional_embedding in {"rope", "sin_rope"}:
self.rope = RotaryEmbedding(max_period=max_period)
self.layers = nn.ModuleList()
for _ in range(num_layers):
self.layers.append(
layer_class(
d_model=d_model,
num_heads=num_heads,
dim_feedforward=dim_feedforward,
causal=causal,
context=context,
rope=self.rope,
device=device,
dtype=dtype,
**kwargs,
)
)
def _init_streaming_state(self, batch_size: int) -> _TransformerState:
device = next(self.parameters()).device
return _TransformerState(offset=torch.zeros(1, device=device, dtype=torch.long))
def forward(self, x: torch.Tensor, *args, **kwargs):
B, T, C = x.shape
state = self._streaming_state
if state is None:
offset = torch.zeros(1, dtype=torch.long, device=x.device)
else:
offset = state.offset
if self.positional_embedding in {"sin", "sin_rope"}:
positions = torch.arange(T, device=x.device).view(1, -1, 1)
positions = positions + offset.view(-1, 1, 1)
pos_emb = create_sin_embedding(
positions, C, max_period=self.max_period, dtype=x.dtype
)
x = x + self.positional_scale * pos_emb
for layer in self.layers:
x = layer(x, *args, **kwargs)
if state is not None:
state.offset.add_(T)
return x
class ProjectedTransformer(StreamingContainer):
"""Transformer with optional projections of the input and output to different dimensions when needed.
Supports multiple outputs.
Args:
input_dimension (int): dimension of the input.
output_dimensions (tuple[int]): dimensions of the outputs.
d_model (int): inner dimension of the Transformer.
conv_layout (bool): If True, expects `[B, C, T]` shaped tensors, otherwise, `[B, T, C]`.
Similarly, the output will have the same layout.
"""
def __init__(
self,
input_dimension: int,
output_dimensions: tp.Tuple[int, ...],
d_model: int,
*,
conv_layout: bool = False,
**kwargs,
):
super().__init__()
self.transformer = StreamingTransformer(d_model=d_model, **kwargs)
self.input_dimension = input_dimension
self.output_dimensions = output_dimensions
self.conv_layout = conv_layout
self.input_proj = None
if d_model != input_dimension:
self.input_proj = nn.Linear(input_dimension, d_model, bias=False)
self.output_projs = nn.ModuleList()
for output_dimension in output_dimensions:
if d_model == output_dimension:
self.output_projs.append(nn.Identity())
else:
self.output_projs.append(
nn.Linear(d_model, output_dimension, bias=False)
)
def forward(self, x, *args, **kwargs):
if self.conv_layout:
x = x.transpose(1, 2)
if self.input_proj is not None:
x = self.input_proj(x)
z = self.transformer(x, *args, **kwargs)
ys = []
for output_proj in self.output_projs:
y = output_proj(z)
if self.conv_layout:
y = y.transpose(1, 2)
ys.append(y)
return ys
|