|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- caner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-finetuned-ner-v4.002 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: caner |
|
type: caner |
|
config: default |
|
split: train[5%:6%] |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8475935828877005 |
|
- name: Recall |
|
type: recall |
|
value: 0.8992907801418439 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8726772195457674 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9513366750208856 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-finetuned-ner-v4.002 |
|
|
|
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the caner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2863 |
|
- Precision: 0.8476 |
|
- Recall: 0.8993 |
|
- F1: 0.8727 |
|
- Accuracy: 0.9513 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.3262 | 1.0 | 3022 | 0.3082 | 0.8324 | 0.8667 | 0.8492 | 0.9380 | |
|
| 0.2304 | 2.0 | 6044 | 0.2884 | 0.8410 | 0.8851 | 0.8625 | 0.9459 | |
|
| 0.1601 | 3.0 | 9066 | 0.2863 | 0.8476 | 0.8993 | 0.8727 | 0.9513 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.2 |
|
|