gemma-mling-7b-GGUF / README.md
morriszms's picture
Upload folder using huggingface_hub
106a8de verified
metadata
language:
  - ko
  - en
  - zh
  - ja
license: other
library_name: transformers
tags:
  - pytorch
  - TensorBlock
  - GGUF
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
pipeline_tag: text-generation
base_model: beomi/gemma-mling-7b
model-index:
  - name: gemma-mling-7b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 20.29
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=beomi/gemma-mling-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 17.63
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=beomi/gemma-mling-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 4.15
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=beomi/gemma-mling-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 0
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=beomi/gemma-mling-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 6.85
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=beomi/gemma-mling-7b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 18.14
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=beomi/gemma-mling-7b
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

beomi/gemma-mling-7b - GGUF

This repo contains GGUF format model files for beomi/gemma-mling-7b.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template


Model file specification

Filename Quant type File Size Description
gemma-mling-7b-Q2_K.gguf Q2_K 3.242 GB smallest, significant quality loss - not recommended for most purposes
gemma-mling-7b-Q3_K_S.gguf Q3_K_S 3.709 GB very small, high quality loss
gemma-mling-7b-Q3_K_M.gguf Q3_K_M 4.069 GB very small, high quality loss
gemma-mling-7b-Q3_K_L.gguf Q3_K_L 4.386 GB small, substantial quality loss
gemma-mling-7b-Q4_0.gguf Q4_0 4.668 GB legacy; small, very high quality loss - prefer using Q3_K_M
gemma-mling-7b-Q4_K_S.gguf Q4_K_S 4.700 GB small, greater quality loss
gemma-mling-7b-Q4_K_M.gguf Q4_K_M 4.964 GB medium, balanced quality - recommended
gemma-mling-7b-Q5_0.gguf Q5_0 5.570 GB legacy; medium, balanced quality - prefer using Q4_K_M
gemma-mling-7b-Q5_K_S.gguf Q5_K_S 5.570 GB large, low quality loss - recommended
gemma-mling-7b-Q5_K_M.gguf Q5_K_M 5.723 GB large, very low quality loss - recommended
gemma-mling-7b-Q6_K.gguf Q6_K 6.529 GB very large, extremely low quality loss
gemma-mling-7b-Q8_0.gguf Q8_0 8.454 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/gemma-mling-7b-GGUF --include "gemma-mling-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/gemma-mling-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'