Bokeh_Line_Controlnet

Description
- Input Image: Black and white line art or images processed with edge detection algorithms
- Output Image: Generated images incorporating edge information
This enables better control over the main subject features and composition, resulting in more vivid and realistic images.
Example
input | output | Prompt |
---|---|---|
![]() |
![]() |
A cat looks up, close-up, sapphire eyes |
![]() |
![]() |
heron bird standing, closeup, graceful |
![]() |
![]() |
a modern build design |
![]() |
![]() |
A old woman talking |
Use
We recommend using ComfyUI for local inference
With Bokeh
import torch
from diffusers import StableDiffusion3ControlNetPipeline
from diffusers import SD3ControlNetModel
from diffusers.utils import load_image
controlnet = SD3ControlNetModel.from_pretrained("tensorart/Bokeh_Depth_Controlnet")
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
"tensorart/bokeh_3.5_medium",
controlnet=controlnet
)
pipe.to("cuda", torch.float16)
control_image = load_image("https://huggingface.co/tensorart/Bokeh_Line_Controlnet/resolve/main/images/001_line.png")
prompt = "A cat looks up, close-up, sapphire eyes"
negative_prompt ="anime,render,cartoon,3d"
negative_prompt_3=""
image = pipe(
prompt,
num_inference_steps=30,
negative_prompt=negative_prompt,
negative_prompt_3=negative_prompt_3,
control_image=control_image,
height=1728,
width=1152,
guidance_scale=4,
controlnet_conditioning_scale=0.8
).images[0]
image.save('image.jpg')
Contact
- Website: https://tensor.art https://tusiart.com
- Developed by: TensorArt
- Api: https://tams.tensor.art/
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for tensorart/Bokeh_Line_Controlnet
Base model
stabilityai/stable-diffusion-3.5-medium
Finetuned
tensorart/bokeh_3.5_medium