Dataset description

As a membrane separating circulating blood and brain extracellular fluid, the blood-brain barrier (BBB) is the protective layer that blocks most foreign drugs. Thus the ability of a drug to penetrate the barrier to deliver to the site of action forms a crucial challenge in developing drugs for the central nervous system.

Task description

Binary classification. Given a drug SMILES string, predict the activity of BBB.

Dataset statistics

Total: 1,975 drugs

Pre-requisites

Install the following packages

pip install PyTDC
pip install DeepPurpose
pip install git+https://github.com/bp-kelley/descriptastorus
pip install dgl torch torchvision

You can also reference the colab notebook here

Dataset split

Random split with 70% training, 10% validation, and 20% testing

To load the dataset in TDC, type

from tdc.single_pred import ADME
data = ADME(name = 'BBB_Martins')

Model description

CNN is applying Convolutional Neural Network on SMILES string fingerprint. Model is tuned with 100 runs using Ax platform. To load the pre-trained model, type

from tdc import tdc_hf_interface
tdc_hf = tdc_hf_interface("BBB_Martins-CNN")
# load deeppurpose model from this repo
dp_model = tdc_hf.load_deeppurpose('./data')
tdc_hf.predict_deeppurpose(dp_model, ['YOUR SMILES STRING'])

References

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.