File size: 10,423 Bytes
6fa48df c598fc3 18dcce4 32e199d 6eab3ec 1a7bbb4 6fa48df 97bdc54 975123f 523ff4d 4235b79 975123f de4ab7e 975123f 32e199d 54d2faf 97bdc54 54d2faf 4ccde54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
library_name: transformers
base_model:
- answerdotai/ModernBERT-base
license: apache-2.0
language:
- en
pipeline_tag: zero-shot-classification
datasets:
- nyu-mll/glue
- facebook/anli
tags:
- instruct
- natural-language-inference
- nli
- mnli
---
# Model Card for Model ID
ModernBERT multi-task fine-tuned on tasksource NLI tasks, including MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI, LogicNLI, Label-NLI and all datasets in the below table).
This is the equivalent of an "instruct" version.
The model was trained for 200k steps on an Nvidia A30 GPU.
It is very good at reasoning tasks (better than llama 3.1 8B Instruct on ANLI and FOLIO), long context reasoning, sentiment analysis and zero-shot classification with new labels.
The following table shows model test accuracy. These are the scores for the same single transformer with different classification heads on top. Further gains can be obtained by fine-tuning on a single-task, e.g. SST, but it this checkpoint is great for zero-shot classification and natural language inference (contradiction/entailment/neutral classification).
| test_name | test_accuracy |
|:--------------------------------------|----------------:|
| glue/mnli | 0.87 |
| glue/qnli | 0.93 |
| glue/rte | 0.85 |
| glue/mrpc | 0.87 |
| glue/qqp | 0.9 |
| glue/cola | 0.86 |
| glue/sst2 | 0.96 |
| super_glue/boolq | 0.64 |
| super_glue/cb | 0.89 |
| super_glue/multirc | 0.82 |
| super_glue/wic | 0.67 |
| super_glue/axg | 0.89 |
| anli/a1 | 0.66 |
| anli/a2 | 0.49 |
| anli/a3 | 0.44 |
| sick/label | 0.93 |
| sick/entailment_AB | 0.91 |
| snli | 0.83 |
| scitail/snli_format | 0.94 |
| hans | 1 |
| WANLI | 0.74 |
| recast/recast_ner | 0.87 |
| recast/recast_sentiment | 0.99 |
| recast/recast_verbnet | 0.88 |
| recast/recast_megaveridicality | 0.88 |
| recast/recast_verbcorner | 0.94 |
| recast/recast_kg_relations | 0.91 |
| recast/recast_factuality | 0.94 |
| recast/recast_puns | 0.96 |
| probability_words_nli/reasoning_1hop | 0.99 |
| probability_words_nli/usnli | 0.72 |
| probability_words_nli/reasoning_2hop | 0.98 |
| nan-nli | 0.85 |
| nli_fever | 0.78 |
| breaking_nli | 0.99 |
| conj_nli | 0.74 |
| fracas | 0.86 |
| dialogue_nli | 0.93 |
| mpe | 0.74 |
| dnc | 0.92 |
| recast_white/fnplus | 0.82 |
| recast_white/sprl | 0.9 |
| recast_white/dpr | 0.68 |
| robust_nli/IS_CS | 0.79 |
| robust_nli/LI_LI | 0.99 |
| robust_nli/ST_WO | 0.85 |
| robust_nli/PI_SP | 0.74 |
| robust_nli/PI_CD | 0.8 |
| robust_nli/ST_SE | 0.81 |
| robust_nli/ST_NE | 0.86 |
| robust_nli/ST_LM | 0.87 |
| robust_nli_is_sd | 1 |
| robust_nli_li_ts | 0.89 |
| add_one_rte | 0.94 |
| paws/labeled_final | 0.95 |
| pragmeval/pdtb | 0.64 |
| lex_glue/scotus | 0.55 |
| lex_glue/ledgar | 0.8 |
| dynasent/dynabench.dynasent.r1.all/r1 | 0.81 |
| dynasent/dynabench.dynasent.r2.all/r2 | 0.75 |
| cycic_classification | 0.9 |
| lingnli | 0.84 |
| monotonicity-entailment | 0.97 |
| scinli | 0.8 |
| naturallogic | 0.96 |
| dynahate | 0.78 |
| syntactic-augmentation-nli | 0.92 |
| autotnli | 0.94 |
| defeasible-nli/atomic | 0.81 |
| defeasible-nli/snli | 0.78 |
| help-nli | 0.96 |
| nli-veridicality-transitivity | 0.98 |
| lonli | 0.97 |
| dadc-limit-nli | 0.69 |
| folio | 0.66 |
| tomi-nli | 0.48 |
| puzzte | 0.6 |
| temporal-nli | 0.92 |
| counterfactually-augmented-snli | 0.79 |
| cnli | 0.87 |
| boolq-natural-perturbations | 0.66 |
| equate | 0.63 |
| logiqa-2.0-nli | 0.52 |
| mindgames | 0.96 |
| ConTRoL-nli | 0.67 |
| logical-fallacy | 0.37 |
| cladder | 0.87 |
| conceptrules_v2 | 1 |
| zero-shot-label-nli | 0.82 |
| scone | 0.98 |
| monli | 1 |
| SpaceNLI | 1 |
| propsegment/nli | 0.88 |
| FLD.v2/default | 0.91 |
| FLD.v2/star | 0.76 |
| SDOH-NLI | 0.98 |
| scifact_entailment | 0.84 |
| AdjectiveScaleProbe-nli | 0.99 |
| resnli | 1 |
| semantic_fragments_nli | 0.99 |
| dataset_train_nli | 0.94 |
| nlgraph | 0.94 |
| ruletaker | 0.99 |
| PARARULE-Plus | 1 |
| logical-entailment | 0.86 |
| nope | 0.44 |
| LogicNLI | 0.86 |
| contract-nli/contractnli_a/seg | 0.87 |
| contract-nli/contractnli_b/full | 0.79 |
| nli4ct_semeval2024 | 0.67 |
| biosift-nli | 0.92 |
| SIGA-nli | 0.53 |
| FOL-nli | 0.8 |
| doc-nli | 0.77 |
| mctest-nli | 0.87 |
| natural-language-satisfiability | 0.9 |
| idioms-nli | 0.81 |
| lifecycle-entailment | 0.78 |
| MSciNLI | 0.85 |
| hover-3way/nli | 0.88 |
| seahorse_summarization_evaluation | 0.73 |
| missing-item-prediction/contrastive | 0.79 |
| Pol_NLI | 0.89 |
| synthetic-retrieval-NLI/count | 0.64 |
| synthetic-retrieval-NLI/position | 0.89 |
| synthetic-retrieval-NLI/binary | 0.91 |
| babi_nli | 0.97 |
| gen_debiased_nli | 0.91 |
# Usage
## [ZS] Zero-shot classification pipeline
```python
from transformers import pipeline
classifier = pipeline("zero-shot-classification",model="tasksource/ModernBERT-base-nli")
text = "one day I will see the world"
candidate_labels = ['travel', 'cooking', 'dancing']
classifier(text, candidate_labels)
```
NLI training data of this model includes [label-nli](https://huggingface.co/datasets/tasksource/zero-shot-label-nli), a NLI dataset specially constructed to improve this kind of zero-shot classification.
## [NLI] Natural language inference pipeline
```python
from transformers import pipeline
pipe = pipeline("text-classification",model="tasksource/ModernBERT-base-nli")
pipe([dict(text='there is a cat',
text_pair='there is a black cat')]) #list of (premise,hypothesis)
```
## Backbone for further fune-tuning
This checkpoint has stronger reasoning and fine-grained abilities than the base version and can be used for further fine-tuning.
# Citation
```
@inproceedings{sileo-2024-tasksource,
title = "tasksource: A Large Collection of {NLP} tasks with a Structured Dataset Preprocessing Framework",
author = "Sileo, Damien",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1361",
pages = "15655--15684",
}
``` |