Update README.md
Browse files
README.md
CHANGED
@@ -19,111 +19,141 @@ tags:
|
|
19 |
|
20 |
ModernBERT multi-task fine-tuned on tasksource NLI tasks, including MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI, LogicNLI, Label-NLI and all datasets in the below table).
|
21 |
This is the equivalent of an "instruct" version.
|
|
|
22 |
|
23 |
-
Test accuracy at 100k training steps. 215k steps version coming december 24th.
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
| glue/
|
29 |
-
| glue/
|
30 |
-
|
|
31 |
-
|
|
32 |
-
|
|
33 |
-
|
|
34 |
-
|
|
35 |
-
|
|
36 |
-
|
|
37 |
-
|
|
38 |
-
|
|
39 |
-
|
|
40 |
-
|
|
41 |
-
|
|
42 |
-
|
|
43 |
-
|
|
44 |
-
|
|
45 |
-
|
|
46 |
-
|
|
47 |
-
|
|
48 |
-
|
|
49 |
-
|
|
50 |
-
|
|
51 |
-
|
|
52 |
-
|
|
53 |
-
|
|
54 |
-
|
|
55 |
-
|
|
56 |
-
|
|
57 |
-
|
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
91 |
-
|
|
92 |
-
|
|
93 |
-
|
|
94 |
-
|
|
95 |
-
|
|
96 |
-
|
|
97 |
-
|
|
98 |
-
|
|
99 |
-
|
|
100 |
-
|
|
101 |
-
|
|
102 |
-
|
|
103 |
-
|
|
104 |
-
|
|
105 |
-
|
|
106 |
-
|
|
107 |
-
|
|
108 |
-
|
|
109 |
-
|
|
110 |
-
|
|
111 |
-
|
|
112 |
-
|
|
113 |
-
|
|
114 |
-
|
|
115 |
-
|
|
116 |
-
|
|
117 |
-
|
|
118 |
-
|
|
119 |
-
|
|
120 |
-
|
|
121 |
-
|
|
122 |
-
|
|
123 |
-
|
|
124 |
-
|
|
125 |
-
|
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
# Usage
|
129 |
|
|
|
19 |
|
20 |
ModernBERT multi-task fine-tuned on tasksource NLI tasks, including MNLI, ANLI, SICK, WANLI, doc-nli, LingNLI, FOLIO, FOL-NLI, LogicNLI, Label-NLI and all datasets in the below table).
|
21 |
This is the equivalent of an "instruct" version.
|
22 |
+
The model was trained for 200k steps on an Nvidia A30 GPU.
|
23 |
|
|
|
24 |
|
25 |
+
|
26 |
+
| test_name | test_accuracy |
|
27 |
+
|:--------------------------------------|----------------:|
|
28 |
+
| glue/mnli | 0.87 |
|
29 |
+
| glue/qnli | 0.93 |
|
30 |
+
| glue/rte | 0.85 |
|
31 |
+
| glue/mrpc | 0.87 |
|
32 |
+
| glue/qqp | 0.9 |
|
33 |
+
| glue/cola | 0.86 |
|
34 |
+
| glue/sst2 | 0.96 |
|
35 |
+
| super_glue/boolq | 0.64 |
|
36 |
+
| super_glue/cb | 0.89 |
|
37 |
+
| super_glue/multirc | 0.82 |
|
38 |
+
| super_glue/wic | 0.67 |
|
39 |
+
| super_glue/axg | 0.89 |
|
40 |
+
| anli/a1 | 0.66 |
|
41 |
+
| anli/a2 | 0.49 |
|
42 |
+
| anli/a3 | 0.44 |
|
43 |
+
| sick/label | 0.93 |
|
44 |
+
| sick/entailment_AB | 0.91 |
|
45 |
+
| snli | 0.83 |
|
46 |
+
| scitail/snli_format | 0.94 |
|
47 |
+
| hans | 1 |
|
48 |
+
| WANLI | 0.74 |
|
49 |
+
| recast/recast_ner | 0.87 |
|
50 |
+
| recast/recast_sentiment | 0.99 |
|
51 |
+
| recast/recast_verbnet | 0.88 |
|
52 |
+
| recast/recast_megaveridicality | 0.88 |
|
53 |
+
| recast/recast_verbcorner | 0.94 |
|
54 |
+
| recast/recast_kg_relations | 0.91 |
|
55 |
+
| recast/recast_factuality | 0.94 |
|
56 |
+
| recast/recast_puns | 0.96 |
|
57 |
+
| probability_words_nli/reasoning_1hop | 0.99 |
|
58 |
+
| probability_words_nli/usnli | 0.72 |
|
59 |
+
| probability_words_nli/reasoning_2hop | 0.98 |
|
60 |
+
| nan-nli | 0.85 |
|
61 |
+
| nli_fever | 0.78 |
|
62 |
+
| breaking_nli | 0.99 |
|
63 |
+
| conj_nli | 0.74 |
|
64 |
+
| fracas | 0.86 |
|
65 |
+
| dialogue_nli | 0.93 |
|
66 |
+
| mpe | 0.74 |
|
67 |
+
| dnc | 0.92 |
|
68 |
+
| recast_white/fnplus | 0.82 |
|
69 |
+
| recast_white/sprl | 0.9 |
|
70 |
+
| recast_white/dpr | 0.68 |
|
71 |
+
| robust_nli/IS_CS | 0.79 |
|
72 |
+
| robust_nli/LI_LI | 0.99 |
|
73 |
+
| robust_nli/ST_WO | 0.85 |
|
74 |
+
| robust_nli/PI_SP | 0.74 |
|
75 |
+
| robust_nli/PI_CD | 0.8 |
|
76 |
+
| robust_nli/ST_SE | 0.81 |
|
77 |
+
| robust_nli/ST_NE | 0.86 |
|
78 |
+
| robust_nli/ST_LM | 0.87 |
|
79 |
+
| robust_nli_is_sd | 1 |
|
80 |
+
| robust_nli_li_ts | 0.89 |
|
81 |
+
| add_one_rte | 0.94 |
|
82 |
+
| paws/labeled_final | 0.95 |
|
83 |
+
| pragmeval/pdtb | 0.64 |
|
84 |
+
| lex_glue/scotus | 0.55 |
|
85 |
+
| lex_glue/ledgar | 0.8 |
|
86 |
+
| dynasent/dynabench.dynasent.r1.all/r1 | 0.81 |
|
87 |
+
| dynasent/dynabench.dynasent.r2.all/r2 | 0.75 |
|
88 |
+
| cycic_classification | 0.9 |
|
89 |
+
| lingnli | 0.84 |
|
90 |
+
| monotonicity-entailment | 0.97 |
|
91 |
+
| scinli | 0.8 |
|
92 |
+
| naturallogic | 0.96 |
|
93 |
+
| dynahate | 0.78 |
|
94 |
+
| syntactic-augmentation-nli | 0.92 |
|
95 |
+
| autotnli | 0.94 |
|
96 |
+
| defeasible-nli/atomic | 0.81 |
|
97 |
+
| defeasible-nli/snli | 0.78 |
|
98 |
+
| help-nli | 0.96 |
|
99 |
+
| nli-veridicality-transitivity | 0.98 |
|
100 |
+
| lonli | 0.97 |
|
101 |
+
| dadc-limit-nli | 0.69 |
|
102 |
+
| folio | 0.66 |
|
103 |
+
| tomi-nli | 0.48 |
|
104 |
+
| puzzte | 0.6 |
|
105 |
+
| temporal-nli | 0.92 |
|
106 |
+
| counterfactually-augmented-snli | 0.79 |
|
107 |
+
| cnli | 0.87 |
|
108 |
+
| boolq-natural-perturbations | 0.66 |
|
109 |
+
| equate | 0.63 |
|
110 |
+
| logiqa-2.0-nli | 0.52 |
|
111 |
+
| mindgames | 0.96 |
|
112 |
+
| ConTRoL-nli | 0.67 |
|
113 |
+
| logical-fallacy | 0.37 |
|
114 |
+
| cladder | 0.87 |
|
115 |
+
| conceptrules_v2 | 1 |
|
116 |
+
| zero-shot-label-nli | 0.82 |
|
117 |
+
| scone | 0.98 |
|
118 |
+
| monli | 1 |
|
119 |
+
| SpaceNLI | 1 |
|
120 |
+
| propsegment/nli | 0.88 |
|
121 |
+
| FLD.v2/default | 0.91 |
|
122 |
+
| FLD.v2/star | 0.76 |
|
123 |
+
| SDOH-NLI | 0.98 |
|
124 |
+
| scifact_entailment | 0.84 |
|
125 |
+
| AdjectiveScaleProbe-nli | 0.99 |
|
126 |
+
| resnli | 1 |
|
127 |
+
| semantic_fragments_nli | 0.99 |
|
128 |
+
| dataset_train_nli | 0.94 |
|
129 |
+
| nlgraph | 0.94 |
|
130 |
+
| ruletaker | 0.99 |
|
131 |
+
| PARARULE-Plus | 1 |
|
132 |
+
| logical-entailment | 0.86 |
|
133 |
+
| nope | 0.44 |
|
134 |
+
| LogicNLI | 0.86 |
|
135 |
+
| contract-nli/contractnli_a/seg | 0.87 |
|
136 |
+
| contract-nli/contractnli_b/full | 0.79 |
|
137 |
+
| nli4ct_semeval2024 | 0.67 |
|
138 |
+
| biosift-nli | 0.92 |
|
139 |
+
| SIGA-nli | 0.53 |
|
140 |
+
| FOL-nli | 0.8 |
|
141 |
+
| doc-nli | 0.77 |
|
142 |
+
| mctest-nli | 0.87 |
|
143 |
+
| natural-language-satisfiability | 0.9 |
|
144 |
+
| idioms-nli | 0.81 |
|
145 |
+
| lifecycle-entailment | 0.78 |
|
146 |
+
| MSciNLI | 0.85 |
|
147 |
+
| hover-3way/nli | 0.88 |
|
148 |
+
| seahorse_summarization_evaluation | 0.73 |
|
149 |
+
| missing-item-prediction/contrastive | 0.79 |
|
150 |
+
| Pol_NLI | 0.89 |
|
151 |
+
| synthetic-retrieval-NLI/count | 0.64 |
|
152 |
+
| synthetic-retrieval-NLI/position | 0.89 |
|
153 |
+
| synthetic-retrieval-NLI/binary | 0.91 |
|
154 |
+
| babi_nli | 0.97 |
|
155 |
+
| gen_debiased_nli | 0.91 |
|
156 |
+
|
157 |
|
158 |
# Usage
|
159 |
|