Built with Axolotl

See axolotl config

axolotl version: 0.5.2

adapter: lora
base_model: echarlaix/tiny-random-mistral
bf16: auto
chat_template: llama3
datasets:
- data_files:
  - 42fa4b965cededb3_train_data.json
  ds_type: json
  format: custom
  path: /runs/taopanda-4_d0616b9d-99ec-4e9e-86fa-82059ce33170/42fa4b965cededb3_train_data.json
  preprocessing:
  - shuffle: true
  type:
    field: null
    field_input: doc
    field_instruction: original_text
    field_output: edited_summary
    field_system: null
    format: null
    no_input_format: null
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: 4
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 25
eval_strategy: steps
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: taopanda-4/957a944b-e075-4b04-8c43-d11fbfdd15aa
hub_strategy: every_save
learning_rate: 0.00010312140429884754
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 750
micro_batch_size: 16
model_type: AutoModelForCausalLM
num_epochs: 32
optimizer: paged_adamw_32bit
output_dir: ./outputs/lora-out/taopanda-4_d0616b9d-99ec-4e9e-86fa-82059ce33170
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
save_steps: 25
save_total_limit: 5
seed: 40883
sequence_len: 512
special_tokens:
  pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_mode: online
wandb_name: taopanda-4_d0616b9d-99ec-4e9e-86fa-82059ce33170
wandb_project: subnet56
wandb_runid: taopanda-4_d0616b9d-99ec-4e9e-86fa-82059ce33170
warmup_ratio: 0.1
weight_decay: 0.1
xformers_attention: null

957a944b-e075-4b04-8c43-d11fbfdd15aa

This model is a fine-tuned version of echarlaix/tiny-random-mistral on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3104

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00010312140429884754
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 40883
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 48
  • training_steps: 480

Training results

Training Loss Epoch Step Validation Loss
10.3814 0.0667 1 10.3775
10.3723 1.6667 25 10.3749
10.3609 3.3333 50 10.3615
10.3307 5.0 75 10.3299
10.3229 6.6667 100 10.3222
10.3171 8.3333 125 10.3189
10.3157 10.0 150 10.3158
10.3147 11.6667 175 10.3147
10.3109 13.3333 200 10.3143
10.3121 15.0 225 10.3137
10.3133 16.6667 250 10.3133
10.3113 18.3333 275 10.3129
10.3142 20.0 300 10.3124
10.3117 21.6667 325 10.3119
10.3107 23.3333 350 10.3118
10.309 25.0 375 10.3113
10.3134 26.6667 400 10.3110
10.3083 28.3333 425 10.3108
10.3103 30.0 450 10.3105
10.312 31.6667 475 10.3104

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for taopanda-4/957a944b-e075-4b04-8c43-d11fbfdd15aa

Adapter
(227)
this model