gena-lm-bert-base-t2t-multi_ft_BioS45_1kbpHG19_DHSs_H3K27AC

This model is a fine-tuned version of AIRI-Institute/gena-lm-bert-base-t2t-multi on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7191
  • F1 Score: 0.8258
  • Precision: 0.8725
  • Recall: 0.7839
  • Accuracy: 0.8275
  • Auc: 0.8676
  • Prc: 0.8589

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Score Precision Recall Accuracy Auc Prc
0.6927 0.2103 500 0.6550 0.6325 0.8027 0.5218 0.6836 0.7657 0.7801
0.6285 0.4207 1000 0.5540 0.7342 0.8129 0.6694 0.7472 0.8065 0.8058
0.5306 0.6310 1500 0.5262 0.7747 0.8010 0.75 0.7724 0.8369 0.8222
0.4969 0.8414 2000 0.4964 0.8208 0.7561 0.8976 0.7955 0.8721 0.8624
0.4722 1.0517 2500 0.4584 0.8228 0.8354 0.8105 0.8178 0.8876 0.8792
0.4466 1.2621 3000 0.4567 0.8424 0.7943 0.8968 0.8250 0.8896 0.8698
0.4418 1.4724 3500 0.4333 0.8416 0.8436 0.8395 0.8351 0.9004 0.8883
0.422 1.6828 4000 0.4661 0.8227 0.8588 0.7895 0.8225 0.9030 0.8967
0.4107 1.8931 4500 0.4329 0.8468 0.8009 0.8984 0.8305 0.8937 0.8585
0.3906 2.1035 5000 0.4643 0.8479 0.8290 0.8677 0.8376 0.8902 0.8512
0.4098 2.3138 5500 0.4532 0.8526 0.8060 0.9048 0.8368 0.8782 0.8309
0.4118 2.5242 6000 0.4862 0.8465 0.8503 0.8427 0.8406 0.9018 0.8845
0.4207 2.7345 6500 0.4667 0.8519 0.8126 0.8952 0.8376 0.8927 0.8561
0.4382 2.9449 7000 0.5130 0.8202 0.8763 0.7710 0.8237 0.9094 0.9039
0.3846 3.1552 7500 0.5103 0.8381 0.8659 0.8121 0.8363 0.9077 0.8992
0.4023 3.3656 8000 0.4508 0.8613 0.8225 0.9040 0.8481 0.9123 0.8963
0.3788 3.5759 8500 0.4996 0.8517 0.7933 0.9194 0.8330 0.8901 0.8517
0.3778 3.7863 9000 0.5016 0.8606 0.8237 0.9008 0.8477 0.8967 0.8631
0.3923 3.9966 9500 0.5175 0.8579 0.8356 0.8815 0.8477 0.8895 0.8575
0.3628 4.2070 10000 0.5557 0.8616 0.8427 0.8815 0.8523 0.8935 0.8706
0.4124 4.4173 10500 0.5216 0.8621 0.8252 0.9024 0.8494 0.8721 0.8318
0.388 4.6277 11000 0.6025 0.8584 0.8127 0.9097 0.8435 0.8572 0.8122
0.4513 4.8380 11500 0.5943 0.8500 0.8524 0.8476 0.8439 0.9012 0.8886
0.4206 5.0484 12000 0.5724 0.8610 0.8414 0.8815 0.8515 0.9016 0.8855
0.3882 5.2587 12500 0.5748 0.8616 0.8524 0.8710 0.8540 0.8901 0.8724
0.3756 5.4691 13000 0.5839 0.8635 0.8477 0.8798 0.8549 0.8756 0.8325
0.4158 5.6794 13500 0.5782 0.8593 0.8169 0.9065 0.8452 0.9048 0.8848
0.3859 5.8898 14000 0.5989 0.8530 0.8496 0.8565 0.8460 0.8947 0.8717
0.336 6.1001 14500 0.6641 0.8542 0.7996 0.9169 0.8368 0.8697 0.8287
0.3724 6.3105 15000 0.6330 0.8599 0.8205 0.9032 0.8464 0.8776 0.8500
0.3809 6.5208 15500 0.7191 0.8258 0.8725 0.7839 0.8275 0.8676 0.8589

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.0
Downloads last month
4
Safetensors
Model size
111M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for tanoManzo/gena-lm-bert-base-t2t-multi_ft_BioS45_1kbpHG19_DHSs_H3K27AC

Finetuned
(10)
this model