cpt core 4
Browse files- scripts/cpt_core_model_4.py +13 -21
scripts/cpt_core_model_4.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from unsloth import FastLanguageModel
|
2 |
import torch
|
3 |
-
|
4 |
|
5 |
max_seq_length = 16384
|
6 |
dtype = torch.bfloat16
|
@@ -20,12 +20,10 @@ model, tokenizer = FastLanguageModel.from_pretrained(
|
|
20 |
dtype=dtype,
|
21 |
load_in_4bit=load_in_4bit,
|
22 |
)
|
23 |
-
|
24 |
print(f'{model=}')
|
25 |
|
26 |
# print('Ignore loaded tokenizer by FastLanguageModel.from_pretrained and using AutoTokenizer.from_pretrained')
|
27 |
# tokenizer = AutoTokenizer.from_pretrained('..', trust_remote_code=True, use_fast=True)
|
28 |
-
|
29 |
# print(f'{tokenizer=}')
|
30 |
|
31 |
model = FastLanguageModel.get_peft_model(
|
@@ -69,33 +67,28 @@ final_dataset = concatenate_datasets(core_datasets)
|
|
69 |
print(f'{final_dataset=}')
|
70 |
'''
|
71 |
|
|
|
72 |
from litdata import TokensLoader, StreamingDataset
|
73 |
|
74 |
-
|
|
|
75 |
input_dir=dataset_input_dir,
|
76 |
item_loader=TokensLoader(block_size=dataset_block_size),
|
77 |
)
|
78 |
|
79 |
|
80 |
-
def unlsoth_generator(
|
81 |
-
|
82 |
-
print(batch)
|
83 |
-
|
84 |
-
yield {
|
85 |
-
'input_ids': batch['input_ids'].tolist() # Convert tensor to list
|
86 |
-
}
|
87 |
|
|
|
|
|
|
|
88 |
break
|
89 |
-
# # Assuming TokensLoader returns tensors with 'input_ids'
|
90 |
-
# yield {
|
91 |
-
# 'input_ids': batch['input_ids'].tolist() # Convert tensor to list
|
92 |
-
# }
|
93 |
|
94 |
-
for n in unlsoth_generator(dataset):
|
95 |
-
print(n)
|
96 |
-
break
|
97 |
|
98 |
-
|
|
|
|
|
99 |
from trl import SFTTrainer
|
100 |
from transformers import TrainingArguments
|
101 |
from unsloth import is_bfloat16_supported
|
@@ -105,7 +98,7 @@ from unsloth import UnslothTrainer, UnslothTrainingArguments
|
|
105 |
trainer = UnslothTrainer(
|
106 |
model=model,
|
107 |
tokenizer=tokenizer,
|
108 |
-
train_dataset=
|
109 |
dataset_text_field='text',
|
110 |
max_seq_length=max_seq_length,
|
111 |
dataset_num_proc=32,
|
@@ -133,4 +126,3 @@ trainer = UnslothTrainer(
|
|
133 |
)
|
134 |
|
135 |
trainer_stats = trainer.train()
|
136 |
-
'''
|
|
|
1 |
from unsloth import FastLanguageModel
|
2 |
import torch
|
3 |
+
from transformers import AutoTokenizer
|
4 |
|
5 |
max_seq_length = 16384
|
6 |
dtype = torch.bfloat16
|
|
|
20 |
dtype=dtype,
|
21 |
load_in_4bit=load_in_4bit,
|
22 |
)
|
|
|
23 |
print(f'{model=}')
|
24 |
|
25 |
# print('Ignore loaded tokenizer by FastLanguageModel.from_pretrained and using AutoTokenizer.from_pretrained')
|
26 |
# tokenizer = AutoTokenizer.from_pretrained('..', trust_remote_code=True, use_fast=True)
|
|
|
27 |
# print(f'{tokenizer=}')
|
28 |
|
29 |
model = FastLanguageModel.get_peft_model(
|
|
|
67 |
print(f'{final_dataset=}')
|
68 |
'''
|
69 |
|
70 |
+
from datasets import Dataset
|
71 |
from litdata import TokensLoader, StreamingDataset
|
72 |
|
73 |
+
|
74 |
+
litgpt_streaming_dataset = StreamingDataset(
|
75 |
input_dir=dataset_input_dir,
|
76 |
item_loader=TokensLoader(block_size=dataset_block_size),
|
77 |
)
|
78 |
|
79 |
|
80 |
+
def unlsoth_generator():
|
81 |
+
global litgpt_streaming_dataset
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
for batch in litgpt_streaming_dataset:
|
84 |
+
# print(batch)
|
85 |
+
yield {'input_ids': batch}
|
86 |
break
|
|
|
|
|
|
|
|
|
87 |
|
|
|
|
|
|
|
88 |
|
89 |
+
train_dataset = Dataset.from_generator(unlsoth_generator, streaming=True)
|
90 |
+
|
91 |
+
|
92 |
from trl import SFTTrainer
|
93 |
from transformers import TrainingArguments
|
94 |
from unsloth import is_bfloat16_supported
|
|
|
98 |
trainer = UnslothTrainer(
|
99 |
model=model,
|
100 |
tokenizer=tokenizer,
|
101 |
+
train_dataset=train_dataset,
|
102 |
dataset_text_field='text',
|
103 |
max_seq_length=max_seq_length,
|
104 |
dataset_num_proc=32,
|
|
|
126 |
)
|
127 |
|
128 |
trainer_stats = trainer.train()
|
|