cpt core 4
Browse files- README.md +3 -1
- scripts/cpt_core_model_4.py +32 -0
README.md
CHANGED
@@ -402,10 +402,12 @@ litgpt convert_pretrained_checkpoint ../out/pretrain-core-3/final ../out/pretrai
|
|
402 |
```bash
|
403 |
litgpt convert_from_litgpt ../out/pretrain-core-3/final ../out/pretrain-core-3/hf
|
404 |
cp ../config-3.json ../out/pretrain-core-3/hf/config.json
|
|
|
|
|
405 |
```
|
406 |
|
407 |
```bash
|
408 |
-
|
409 |
```
|
410 |
|
411 |
```
|
|
|
402 |
```bash
|
403 |
litgpt convert_from_litgpt ../out/pretrain-core-3/final ../out/pretrain-core-3/hf
|
404 |
cp ../config-3.json ../out/pretrain-core-3/hf/config.json
|
405 |
+
cp -rv ../tokenizer/* ../out/pretrain-core-3/hf
|
406 |
+
python -B convert_pth_to_safetensors.py
|
407 |
```
|
408 |
|
409 |
```bash
|
410 |
+
python -B cpt_core_model_4.py
|
411 |
```
|
412 |
|
413 |
```
|
scripts/cpt_core_model_4.py
CHANGED
@@ -8,6 +8,12 @@ load_in_4bit = True
|
|
8 |
model_name = '../out/pretrain-core-3/hf'
|
9 |
output_dir = '../out/cpt-core-4'
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
12 |
model_name=model_name,
|
13 |
max_seq_length=max_seq_length,
|
@@ -63,6 +69,32 @@ final_dataset = concatenate_datasets(core_datasets)
|
|
63 |
print(f'{final_dataset=}')
|
64 |
'''
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
'''
|
67 |
from trl import SFTTrainer
|
68 |
from transformers import TrainingArguments
|
|
|
8 |
model_name = '../out/pretrain-core-3/hf'
|
9 |
output_dir = '../out/cpt-core-4'
|
10 |
|
11 |
+
dataset_input_dir = '../core-data-4-8193-16385-16385-1000/'
|
12 |
+
dataset_block_size = 16385
|
13 |
+
|
14 |
+
#
|
15 |
+
# model
|
16 |
+
#
|
17 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
18 |
model_name=model_name,
|
19 |
max_seq_length=max_seq_length,
|
|
|
69 |
print(f'{final_dataset=}')
|
70 |
'''
|
71 |
|
72 |
+
from litdata import TokensLoader, StreamingDataset
|
73 |
+
|
74 |
+
dataset = StreamingDataset(
|
75 |
+
input_dir=dataset_input_dir,
|
76 |
+
item_loader=TokensLoader(block_size=dataset_block_size),
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
def unlsoth_generator(dataset):
|
81 |
+
for batch in dataset:
|
82 |
+
print(batch)
|
83 |
+
|
84 |
+
yield {
|
85 |
+
'input_ids': batch['input_ids'].tolist() # Convert tensor to list
|
86 |
+
}
|
87 |
+
|
88 |
+
break
|
89 |
+
# # Assuming TokensLoader returns tensors with 'input_ids'
|
90 |
+
# yield {
|
91 |
+
# 'input_ids': batch['input_ids'].tolist() # Convert tensor to list
|
92 |
+
# }
|
93 |
+
|
94 |
+
for n in unlsoth_generator(dataset):
|
95 |
+
print(n)
|
96 |
+
break
|
97 |
+
|
98 |
'''
|
99 |
from trl import SFTTrainer
|
100 |
from transformers import TrainingArguments
|