mtasic85's picture
config
b71ffb9
|
raw
history blame
5.62 kB
metadata
license: mit
pipeline_tag: text-generation
library_name: transformers
language:
  - en
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - eo
  - es
  - et
  - eu
  - fa
  - ff
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gn
  - gu
  - ha
  - he
  - hi
  - hr
  - ht
  - hu
  - hy
  - id
  - ig
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lg
  - li
  - ln
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - ns
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - qu
  - rm
  - ro
  - ru
  - sa
  - si
  - sc
  - sd
  - sk
  - sl
  - so
  - sq
  - sr
  - ss
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tn
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - wo
  - xh
  - yi
  - yo
  - zu
datasets:
  - ontocord/fineweb-permissive-multilingual-2m
  - distily/c4_multilingual_1M
  - data-silence/sumnews
  - xu-song/cc100-samples
  - badrex/llm-emoji-dataset
  - fblgit/simple-math
  - Gusarich/math-expressions-1m
  - neuralwork/arxiver
  - christopher/rosetta-code
  - nampdn-ai/tiny-codes
  - JeanKaddour/minipile
  - NousResearch/hermes-function-calling-v1
  - simplescaling/s1K-1.1
  - mlabonne/open-perfectblend
  - allenai/tulu-3-sft-mixture
  - rombodawg/Everything_Instruct_Multilingual
  - open-r1/OpenR1-Math-220k
  - open-thoughts/OpenThoughts-114k
  - cognitivecomputations/dolphin-r1
  - simplescaling/s1K-1.1
tags:
  - chat
  - core
  - base
  - instruct
  - reason

tangled-alpha-0.9-core

logo

time python -B prepare_core_datasets.py
i=0, min_len=0, max_len=1073741824, block_size=1025, chunk_size=16400000, len(dataset)=5146620, len(dataset) * block_size=5275285500
Total number of tokens in the optimized dataset '../core-data-0-0-1073741824-1025-16000' is 5275285500

i=1, min_len=1025, max_len=2049, block_size=2049, chunk_size=16392000, len(dataset)=309838, len(dataset) * block_size=634858062
Total number of tokens in the optimized dataset '../core-data-1-1025-2049-2049-8000' is 634858062

i=2, min_len=2049, max_len=4097, block_size=4097, chunk_size=16388000, len(dataset)=113843, len(dataset) * block_size=466414771
Total number of tokens in the optimized dataset '../core-data-2-2049-4097-4097-4000' is 466414771

i=3, min_len=4097, max_len=8193, block_size=8193, chunk_size=16386000, len(dataset)=56713, len(dataset) * block_size=464649609
Total number of tokens in the optimized dataset '../core-data-3-4097-8193-8193-2000' is 464649609

i=4, min_len=8193, max_len=16385, block_size=16385, chunk_size=16385000, len(dataset)=37406, len(dataset) * block_size=612897310
Total number of tokens in the optimized dataset '../core-data-4-8193-16385-16385-1000' is 612897310

i=5, min_len=16385, max_len=32769, block_size=32769, chunk_size=16384500, len(dataset)=12737, len(dataset) * block_size=417378753
Total number of tokens in the optimized dataset '../core-data-5-16385-32769-32769-500' is 417378753

i=6, min_len=32769, max_len=65537, block_size=65537, chunk_size=16384250, len(dataset)=2824, len(dataset) * block_size=185076488
Total number of tokens in the optimized dataset '../core-data-6-32769-65537-65537-250' is 185076488

i=7, min_len=65537, max_len=131073, block_size=131073, chunk_size=16384125, len(dataset)=634, len(dataset) * block_size=83100282
Total number of tokens in the optimized dataset '../core-data-7-65537-131073-131073-125' is 83100282

real    292m54.341s
user    2118m1.154s
sys     12m2.746s
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt pretrain --config pretrain_core_model_0.yaml
Seed set to 23
Time to instantiate model: 0.44 seconds.
Total parameters: 234,914,304
Verifying settings ...
Measured TFLOPs: 55520.94
Epoch 1 | iter 64 step 1 | loss train: 11.977, val: n/a | iter time: 490.27 ms (step) remaining time: 6 days, 22:47:04
Epoch 1 | iter 128 step 2 | loss train: 11.970, val: n/a | iter time: 351.11 ms (step) remaining time: 4 days, 16:53:01
Epoch 1 | iter 192 step 3 | loss train: 11.971, val: n/a | iter time: 353.74 ms (step) remaining time: 3 days, 23:43:23
Epoch 1 | iter 256 step 4 | loss train: 11.974, val: n/a | iter time: 355.03 ms (step) remaining time: 3 days, 14:41:57
Epoch 1 | iter 320 step 5 | loss train: 11.964, val: n/a | iter time: 357.36 ms (step) remaining time: 3 days, 9:21:54
Epoch 1 | iter 384 step 6 | loss train: 11.957, val: n/a | iter time: 362.27 ms (step) remaining time: 3 days, 5:53:20
Epoch 1 | iter 448 step 7 | loss train: 11.948, val: n/a | iter time: 359.89 ms (step) remaining time: 3 days, 3:26:34
Epoch 1 | iter 512 step 8 | loss train: 11.938, val: n/a | iter time: 363.84 ms (step) remaining time: 3 days, 1:37:54
Epoch 1 | iter 576 step 9 | loss train: 11.920, val: n/a | iter time: 362.75 ms (step) remaining time: 3 days, 0:13:59
Epoch 1 | iter 640 step 10 | loss train: 11.900, val: n/a | iter time: 363.46 ms (step) remaining time: 2 days, 23:07:06
# ...

Backup wandb:

mv wandb wandb-pretrain-core-0

Chat with model:

CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True litgpt chat ../out/pretrain-core-0/final
CUDA_VISIBLE_DEVICES=0 CUDA_LAUNCH_BLOCKING=0 PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True time litgpt evaluate --tasks 'leaderboard' --out_dir '../evaluate/pretrain-core-0/leaderboard/' --batch_size 1 --dtype 'bfloat16' '../out/pretrain-core-0/final'