distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4335
- Accuracy: {'accuracy': 0.8008898776418243}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.5327 | 1.0 | 525 | 0.5946 | {'accuracy': 0.796440489432703} |
0.4557 | 2.0 | 1050 | 0.6396 | {'accuracy': 0.8020022246941045} |
0.4072 | 3.0 | 1575 | 0.6353 | {'accuracy': 0.7986651835372637} |
0.37 | 4.0 | 2100 | 0.8301 | {'accuracy': 0.7842046718576196} |
0.3246 | 5.0 | 2625 | 1.0083 | {'accuracy': 0.7986651835372637} |
0.2574 | 6.0 | 3150 | 1.1111 | {'accuracy': 0.8120133481646273} |
0.1955 | 7.0 | 3675 | 1.1856 | {'accuracy': 0.7997775305895439} |
0.1479 | 8.0 | 4200 | 1.2189 | {'accuracy': 0.8008898776418243} |
0.1088 | 9.0 | 4725 | 1.3530 | {'accuracy': 0.8042269187986651} |
0.1091 | 10.0 | 5250 | 1.4335 | {'accuracy': 0.8008898776418243} |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for talhasarlik/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased