distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4335
  • Accuracy: {'accuracy': 0.8008898776418243}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5327 1.0 525 0.5946 {'accuracy': 0.796440489432703}
0.4557 2.0 1050 0.6396 {'accuracy': 0.8020022246941045}
0.4072 3.0 1575 0.6353 {'accuracy': 0.7986651835372637}
0.37 4.0 2100 0.8301 {'accuracy': 0.7842046718576196}
0.3246 5.0 2625 1.0083 {'accuracy': 0.7986651835372637}
0.2574 6.0 3150 1.1111 {'accuracy': 0.8120133481646273}
0.1955 7.0 3675 1.1856 {'accuracy': 0.7997775305895439}
0.1479 8.0 4200 1.2189 {'accuracy': 0.8008898776418243}
0.1088 9.0 4725 1.3530 {'accuracy': 0.8042269187986651}
0.1091 10.0 5250 1.4335 {'accuracy': 0.8008898776418243}

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for talhasarlik/distilbert-base-uncased-lora-text-classification

Adapter
(237)
this model